AP Stats Ch 19 - Required Practice

Name: Per: \qquad
\#1. DV Seniors. Suppose that we take an SRS of $\mathrm{n}=40$ seniors from DV and ask them if they are staying in state for college. 34 of these seniors say that they are staying in state. Find the 95% confidence interval which contains the proportion of all seniors at DV who will stay in state for college.
a) What is \hat{p} ?
b) Check the assumptions:

1) SRS?
2) Individuals are independent?
3) $n<10 \%$ of population?
4) success/failure ($n p \geq 10, n q \geq 10$)?
c) Find critical value $\left(z^{*}\right)$ for the confidence level.
d) Find the standard error for this statistic (use the AP Stats Exam formula sheet 'recipe' $-\mathrm{SE}=$ standard dev).
(for sample proportions, $S E_{\hat{p}}=\sqrt{\frac{\hat{p} \hat{q}}{n}}$)
e) Find the margin of error $\left(M E=\left(z^{*}\right)\left(S E_{\hat{p}}\right)\right)$
f) Find the confidence interval ($C I=\hat{p} \pm M E$)

Now interpret the confidence interval in the context of the problem:
g) The Margin of Error here is 11%. If we increase the sample size, n, the standard error will decrease and the margin of error will decrease. Currently, $n=40$. How high would n need to be if we wanted a margin of error of only 5% (without changing the confidence level)?
h) The required n calculated in part g uses the sample proportion from this specific sample. If we took a difference sample with this same sample size, the \hat{p} value would likely vary due to natural sampling variation, which slightly affects standard deviation and therefore margin of error. How can we select an n that would guarantee that we have a margin of error of only 5% regardless of the sample's \hat{p} value?
\#2. Gambling. A city ballot includes a local initiative that would legalize gambling. The issue is hotly contested, and two groups decide to conduct polls to predict the outcome. The local newspaper finds that 53% of 1200 randomly selected voters plan to vote "yes", while a college Statistics class finds 54% of 450 randomly selected voters in support. Both groups will create 95% confidence intervals.
a) Without finding the confidence intervals, explain which one will have the larger margin of error.
b) Use your calculator to find both confidence intervals (assume all conditions are met).
c) Which group concludes that the outcome is too close to call? Why?
\#3. Junk Mail. Direct mail advertisers send solicitations (a.k.a. "junk mail") to thousands of potential customers in the hope that some will buy the company's product. The response rate is usually quite low. Suppose a company wants to test the response to a new flyer, and sends it to 1000 people randomly selected from their mailing list of over 200,000 people. They get orders from 123 of the recipients.
a) Create a 90% confidence interval for the percentage of people the company contacts who may buy something.
b) Interpret this confidence interval in the context of the problem.
c) Explain what " 90% confidence" means in the context of the problem.
d) The company must decide whether to now do a mass mailing. The mailing won't be cost-effective unless it produces at least a 5% response rate. What does your confidence interval suggest? Explain.
\#4. DV Seniors (again). Suppose our senior class has 743 students. It is believed that 42% of our seniors attend ASU after graduation. We want to calculate a confidence interval for the proportion of our seniors who are planning to go to ASU next year.
a) How many randomly selected seniors must we ask to create an interval in which we are 90% confident within a margin of error of 0.12 ?
b) How about in which we are 90% confident, with a margin of error of 0.10 ? Before you start your calculations, do you think (circle one) n will increase or decrease?
c) Repeat parts a and b but with a confidence level of 95%.
d) Should we be concerned about these new sample sizes? Explain why, or why not.
\#5. \mathbf{n} and Margin of Error. Calculate the 95% confidence interval if a sample $\mathrm{n}=50$ has $\hat{p}=0.4$:

Now compute the 95% confidence intervals for $\hat{p}=0.4$ if n is increased to be...

Do you see a pattern here? How, specifically, does sample size change the margin of error?
3) TV Viewership. The PBS T.V. station is interested in knowing the percentage of their viewers who watch NOVA on Wednesday evenings. How large should their sample size be if they want to be within 3% with 95% confidence?
4) How large should n be if an original sample size is $n=200$ and we want the confidence interval to be twice as wide?
\qquad

A state's Department of Education reports that 12% of the high school students in that state attend private high schools. The State University wonders if the percentage is the same in their applicant pool. Admissions officers plan to check a random sample of the over 10,000 applications on file to estimate the percentage of students applying for admission who attend private schools.

1. The admissions officers want to estimate the true percentage of private school applicants to within $\pm 4 \%$, with 90% confidence. How many applications should they sample?
2. They actually select a random sample of 450 applications, and find that 46 of those students attend private schools. Create the confidence interval.
3. Interpret the confidence interval in this context.
4. Explain what 90% confidence means in this context.
5. Should the admissions officers conclude that the percentage of private school students in their applicant pool is lower than the statewide enrollment rate of 12% ? Explain.
