AP Calculus BC

9.6 Worksheet

Name: \qquad

Show that \mathbf{u} and \mathbf{v} are equivalent.

1. $\mathbf{u}:(3,2),(5,6)$

$$
\mathbf{v}=(1,4),(3,8)
$$

2. $\mathbf{u}=(-4,0),(1,8)$
$\mathbf{v}=(2,-1),(7,7)$

Find the component form of the vector \mathbf{v} and sketch the vector with its initial point at the origin.
3.

4.

Find the magnitude of the vector \mathbf{v}.
5. $\quad v=<7,0\rangle$
6. $v=<-3,0>$
7. $v=\langle 4,3>$
8. $v=<12,-5>$
9. $v=<6,-5>$
10. $\quad v=<-10,3>$

Perform the following operations on the vectors: $2 / 3 \mathbf{u}, 3 \mathbf{v}, \mathbf{v}-\mathbf{u}, 2 \mathbf{u}+5 \mathbf{v}$.
11. $\mathbf{u}=<4,9>$

$$
\mathbf{v}=\langle 2,-5\rangle
$$

12. $\mathbf{u}=\langle-3,-8\rangle$
$\mathbf{v}=<8,25>$

Find the following: $\quad\|\boldsymbol{u}\|,\|\boldsymbol{v}\|,\|\boldsymbol{u}+\boldsymbol{v}\|,\left\|\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}\right\|,\left\|\frac{v}{\|\boldsymbol{v}\|}\right\|,\left\|\frac{\boldsymbol{u}+\boldsymbol{v}}{\|\boldsymbol{u}+\boldsymbol{v}\|}\right\|$
13. $\begin{aligned} & \mathbf{u}=\langle 1,-1> \\ & \mathbf{v}=\langle-1,2>\end{aligned}$

$$
v=\langle-1,2\rangle
$$

Find the vector \mathbf{v}, given its magnitude and direction.
15. $\|\boldsymbol{v}\|=3, \theta=45^{\circ}$
16. $\|v\|=2, \theta=150^{\circ}$

AP Calculus BC

9.7 Worksheet

Name: \qquad
Period: \qquad
Find the domain of the vector-valued function.

1. $\boldsymbol{r}(t)=\left\langle\frac{1}{t+1}, \frac{t}{2}\right\rangle$
2. $\boldsymbol{r}(t)=\left\langle\sqrt{4-t^{2}}, t^{2}\right\rangle$
3. $\boldsymbol{r}(t)=\left\langle\ln (t),-e^{t}\right\rangle$
4. $\quad \boldsymbol{r}(t)=\langle\sin (t), \cos (t)\rangle$

Evaluate (if possible) the vector-valued function at each given time t.
5. $\boldsymbol{r}(t)=\left\langle\frac{1}{2} t^{2},-t+1\right\rangle$
a. $\mathbf{r}(1)=$
b. $\mathbf{r}(0)=$
c. $r(s+1)=$
d. $\mathbf{r}(2+\Delta \mathrm{t})-\mathbf{r}(2)=$
6. Match the equation with its graph.
$\boldsymbol{r}(t)=\langle 3 t, 2 t-1\rangle \quad \boldsymbol{r}(t)=\left\langle 2 t^{3},-t^{2}\right\rangle \quad \boldsymbol{r}(t)=\langle\cos (t), \sin (t)\rangle \quad \boldsymbol{r}(t)=\langle 4 \cos (t), \sin (t)\rangle$

Sketch the plane curve represented by the vector-valued function and give the orientation of the curve.
7. $\boldsymbol{r}(t)=\left\langle\frac{t}{4}, t-1\right\rangle$
8. $\boldsymbol{r}(t)=\langle 5-t, \sqrt{t}\rangle$
9. $\boldsymbol{r}(t)=\left\langle t^{3}, t^{2}\right\rangle$
10. $\left\langle t^{2}+t, t^{2}-t\right\rangle$
11. $\boldsymbol{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle$
12. $\langle\cos (t), 3 \sin (t)\rangle$

Find $\mathbf{r}^{\prime}(\mathrm{t}), \mathbf{r}\left(\mathrm{t}_{0}\right)$ and $\mathbf{r}^{\prime}\left(\mathrm{t}_{0}\right)$. Then sketch the plane curve represented by $\mathbf{r}(\mathrm{t})$ and sketch the vectors $\mathbf{r}\left(\mathrm{t}_{0}\right)$ and $\mathbf{r}^{\prime}\left(\mathrm{t}_{0}\right)$. Position the vectors such that the initial point of $\mathbf{r}\left(\mathrm{t}_{0}\right)$ is at the origin, and the initial point of $\mathbf{r}^{\prime}\left(\mathrm{t}_{0}\right)$ is at the terminal point of $\mathbf{r}^{\prime}\left(\mathrm{t}_{0}\right)$.
13. $\boldsymbol{r}(t)=\left\langle t^{2}, t\right\rangle, t_{0}=2$
14. $\quad \boldsymbol{r}(t)=\langle\cos (t), \sin (t)\rangle, t_{0}=\frac{\pi}{2}$
\qquad
9.8 Worksheet

Period: \qquad
$r(t)$ represents the path of an object moving on a plane.
(a) Find the velocity vector, speed, and acceleration vector of the object.
(b) Evaluate the velocity vector and acceleration vector of the object at the given value of t.
(c) Sketch the graph of the path, and sketch the velocity and acceleration vectors at the given value of t .

1. $\boldsymbol{r}(t)=\langle 3 t, t-1\rangle, t=1$
2. $\boldsymbol{r}(t)=\left\langle t,-t^{2}+4\right\rangle, t=1$
3. $\boldsymbol{r}(t)=\left\langle t^{2}, t\right\rangle, t=2$
4. $\quad \boldsymbol{r}(t)=\left\langle\frac{1}{4} t^{3}+1, t\right\rangle, t=2$
5. $\quad \boldsymbol{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle, t=\frac{\pi}{4}$
6. $\quad \boldsymbol{r}(t)=\langle t-\sin (t), 1-\cos (t)\rangle, t=\pi$

The velocity vector $\mathbf{v}(\mathrm{t})$ and the position of a particle at time $\mathrm{t}=0$ are given.
(a) Find the position of the particle at time $t=3$.
(b) Find the total distance travelled on the interval $0 \leq t \leq 3$.
(c) Find the position vector of the particle.
7. $\boldsymbol{v}(t)=\langle 3,1\rangle,(4,5)$
8. $\boldsymbol{v}(t)=\langle 4,10\rangle,(3,1)$
9. $\boldsymbol{v}(t)=\left\langle 3 t^{2}, 2 t\right\rangle,(1,2)$
10. $v(t)=\left\langle 8 t-1,6 t^{2}+1\right\rangle,(4,0)$

Use the given information to find the velocity and position vectors. Then find the position at time $t=2$.
11. $\quad \boldsymbol{a}(t)=\langle 2,3\rangle, \boldsymbol{v}(0)=\langle 0,4\rangle, \boldsymbol{r}(0)=\langle 0,0\rangle$
12. $\quad \boldsymbol{a}(t)=\langle t, t\rangle, \boldsymbol{v}(0)=\langle 3,1\rangle, \boldsymbol{r}(0)=\langle 1,5\rangle$
13. $\quad \boldsymbol{a}(t)=\left\langle 4 t, t^{2}\right\rangle, \boldsymbol{v}(0)=\langle 5,0\rangle, \boldsymbol{r}(0)=\langle 4,2\rangle$
14. $\boldsymbol{a}(t)=\langle t, \sin (t)\rangle, \boldsymbol{v}(0)=\langle 0,-1\rangle, \boldsymbol{r}(0)=\langle 0,0\rangle$

