Name:			

Period: _____

9.6 Worksheet

AP Calculus BC

Show that **u** and **v** are equivalent.

1.
$$\mathbf{u} : (3,2), (5,6)$$

 $\mathbf{v} = (1,4), (3,8)$
2. $\mathbf{u} = (-4,0), (1,8)$
 $\mathbf{v} = (2,-1), (7,7)$

Find the component form of the vector **v** and sketch the vector with its initial point at the origin.

3. y (5,4)	4. 4 * (3, 4)
4 v v	3+
2- (1, 2)	ī- v
1+ x	
-1 + 1 2 3 4 5	-2+ (3,-2)

Find the magnitude of the vector **v**.

5. **v** = <7, 0> 6. **v** = <-3, 0>

7.	v = <4. 3>	8.	v = <125>
	• • • • • •	0:	• • ± ∠, 0,

Perform the following operations on the vectors: 2/3u, 3v, v - u, 2u + 5v.

11.	u = <4, 9>	12.	u = <-3, -8>
	v = <2, -5>		v = <8, 25>

Find the following:		$\ \boldsymbol{u}\ , \ \boldsymbol{v}\ , \ \boldsymbol{u} + \boldsymbol{v}\ , \left\ \frac{\boldsymbol{u}}{\ \boldsymbol{u}\ }\right\ , \left\ \frac{\boldsymbol{v}}{\ \boldsymbol{v}\ }\right\ , \left\ \frac{\boldsymbol{u}+\boldsymbol{v}}{\ \boldsymbol{u}+\boldsymbol{v}\ }\right\ $		
13.	u = <1, -1>	14.	u = <0, 1>	
	v = <-1, 2>		v = <3, -3>	

Find the vector **v**, given its magnitude and direction.

15.	$\ \boldsymbol{v}\ = 3, \theta = 45^{\circ}$	16.	$\ \boldsymbol{v}\ = 2, \theta = 150^{\circ}$
-----	---	-----	--

AP Calculus BC

9.7 Worksheet

Find the domain of the vector-valued function.

1.
$$r(t) = \langle \frac{1}{t+1}, \frac{t}{2} \rangle$$
 2. $r(t) = \langle \sqrt{4 - t^2}, t^2 \rangle$

3.
$$r(t) = \langle \ln(t), -e^t \rangle$$
 4. $r(t) = \langle \sin(t), \cos(t) \rangle$

Evaluate (if possible) the vector-valued function at each given time t.

5.
$$r(t) = \langle \frac{1}{2}t^2, -t+1 \rangle$$

a. $r(1) =$ b. $r(0) =$

c.
$$r(s + 1) = d. r(2 + \Delta t) - r(2) =$$

6. Match the equation with its graph.

$$\mathbf{r}(t) = \langle 3t, 2t - 1 \rangle$$
 $\mathbf{r}(t) = \langle 2t^3, -t^2 \rangle$ $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ $\mathbf{r}(t) = \langle 4\cos(t), \sin(t) \rangle$

Name: _	 	
_		
Period:		

Sketch the plane curve represented by the vector-valued function and give the orientation of the curve.

7.
$$r(t) = \langle \frac{t}{4}, t-1 \rangle$$
 8. $r(t) = \langle 5-t, \sqrt{t} \rangle$

9.
$$r(t) = \langle t^3, t^2 \rangle$$
 10. $\langle t^2 + t, t^2 - t \rangle$

11.
$$r(t) = \langle 2\cos(t), 2\sin(t) \rangle$$
 12. $\langle \cos(t), 3\sin(t) \rangle$

Find $\mathbf{r}'(t)$, $\mathbf{r}(t_0)$ and $\mathbf{r}'(t_0)$. Then sketch the plane curve represented by $\mathbf{r}(t)$ and sketch the vectors $\mathbf{r}(t_0)$ and $\mathbf{r}'(t_0)$. Position the vectors such that the initial point of $\mathbf{r}(t_0)$ is at the origin, and the initial point of $\mathbf{r}'(t_0)$ is at the terminal point of $\mathbf{r}'(t_0)$.

13.
$$r(t) = \langle t^2, t \rangle, t_0 = 2$$
 14. $r(t) = \langle \cos(t), \sin(t) \rangle, t_0 = \frac{\pi}{2}$

AP Calculus BC

9.8 Worksheet

Name: _____

Period: _____

- **r**(t) represents the path of an object moving on a plane.
- (a) Find the velocity vector, speed, and acceleration vector of the object.
- (b) Evaluate the velocity vector and acceleration vector of the object at the given value of t.
- (c) Sketch the graph of the path, and sketch the velocity and acceleration vectors at the given value of t.

1.
$$r(t) = \langle 3t, t-1 \rangle, t = 1$$

2. $r(t) = \langle t, -t^2 + 4 \rangle, t = 1$

3. $r(t) = \langle t^2, t \rangle, t = 2$

4. $r(t) = \langle \frac{1}{4}t^3 + 1, t \rangle, t = 2$

The velocity vector $\mathbf{v}(t)$ and the position of a particle at time t = 0 are given.

- (a) Find the position of the particle at time t = 3.
- (b) Find the total distance travelled on the interval $0 \le t \le 3$.
- (c) Find the position vector of the particle.
- 7. $v(t) = \langle 3,1 \rangle, (4,5)$ 8. $v(t) = \langle 4,10 \rangle, (3,1)$

Use the given information to find the velocity and position vectors. Then find the position at time t = 2.

11.
$$a(t) = \langle 2, 3 \rangle, v(0) = \langle 0, 4 \rangle, r(0) = \langle 0, 0 \rangle$$
 12. $a(t) = \langle t, t \rangle, v(0) = \langle 3, 1 \rangle, r(0) = \langle 1, 5 \rangle$

13.
$$a(t) = \langle 4t, t^2 \rangle, v(0) = \langle 5, 0 \rangle, r(0) = \langle 4, 2 \rangle$$
 14. $a(t) = \langle t, \sin(t) \rangle, v(0) = \langle 0, -1 \rangle, r(0) = \langle 0, 0 \rangle$