AP Calculus BC

9.4 Worksheet

Plot the (r, θ) polar coordinate and find the corresponding rectangular (x, y) coordinate.

$$1.\left(8,\frac{\pi}{2}\right) \qquad 2.\left(-2,\frac{5\pi}{3}\right)$$

$$3.\left(7,\frac{5\pi}{4}\right) \qquad \qquad 4.\left(-2,\frac{11\pi}{6}\right)$$

The rectangular (x, y) coordinate is given. Plot the coordinate, then find two sets of polar coordinates in $0 \le \theta \le 2\pi$.

Covert the rectangular equation to polar form and sketch its graph.

9. $x^2 + y^2 = 9$ 10. $x^2 - y^2 = 9$

Name: _____

Period: _____

11. $x^2 + y^2 = a^2$ 12. $x^2 - y^2 = a^2$

13. y = 8 14. x = 12

15. 3x - y + 2 = 0 16. xy = 4

17. $y^2 = 9x$ 18. $(x^2 + y^2)^2 - 9(x^2 - y^2) = 0$

Covert the polar equation to rectangular form and sketch its graph.

19. r = 4 20. r = -5

21.
$$r = 3\sin(\theta)$$
 22. $r = 5\cos(\theta)$

23.
$$r = \theta$$
 24. $\theta = \frac{5\pi}{6}$

Find the points of vertical and horizontal tangency (if any) to the polar curve.

 $25. r = 1 - \sin(\theta)$

Sketch a graph of the polar equation by hand. 26. $r = 1 + \sin(\theta)$

27. $r = 4(1 + \cos(\theta))$

AP Calc	culus BC		Name:
9.5 Wo	rksheet		Period:
Write an integral that represents the area of the entire enclosed figure.			
1.	$r = 4\sin(\theta)$	2.	$r = \cos(2\theta)$

Find the area of the region.

3. Interior of $r = 6\sin(\theta)$ 4. Interior of $r = 3\cos(\theta)$

5. One petal of
$$r = \sin(2\theta)$$
 6. One petal of $r = \cos(5\theta)$

Graph the polar equation on a calculator, then find the area analytically.

7. Inner loop of $r = 1 + 2\cos(\theta)$ 8. Inner loop of $r = 2 - 4\cos(\theta)$

Find the points of intersection of the graphs of the equations.

9.
$$r = 1 + \cos(\theta)$$

 $r = 1 - \cos(\theta)$
10. $r = 3(1 + \sin(\theta))$
 $r = 3(1 - \sin(\theta))$

11. $r = 4 - 5\sin(\theta)$ $r = 3\sin(\theta)$ 12. $r = 3 + \sin(\theta)$ $r = 2\csc(\theta)$

Use a calculator to graph, then find the area analytically.

13. Common interior of $r = 3 - 2\sin(\theta)$ and $r = -3 + 2\sin(\theta)$.

14. Common interior of $r = 4\sin(\theta)$ and r = 2.

15. Inside $r = 2\cos(\theta)$ and outside r = 1.

Use your graphing calculator to graph and find the arc length.

16. $r = 2\theta$, $0 \le \theta \le 2\pi$ 17. $r = \sin(3\cos(\theta))$, $0 \le \theta \le \pi$

Calculus 2

Unit 9 Part 2 REVIEW

Convert the equation to polar form and sketch the curve:

#1.
$$9x^2 + 9y^2 = 18y$$

#2. $y = 3$

#3.
$$y = x^2$$

Convert the equation to rectangular form and sketch the curve:

#4.
$$r = 3$$

#5. $r + 6\cos\theta - 2\sin\theta = \frac{6}{r}$
#6. $r = 8\sin\theta$
#7. $r = \cot\theta\csc\theta$
#8. $\theta = \frac{\pi}{3}$

Graph the polar equation curve and find an interval for which the graph is traced only once:

#9.
$$r = 4 - 3\cos\theta$$

#10. $r = 5$
#11. $r = 4\cos(3\theta)$

For which values of θ do the following curves intersect?

#12. $r = 5 + 4\sin\theta$, r = 3#13. $r = 4\cos\theta$, $r = 8\cos\theta$ #14. $r = 5(1 - \cos\theta)$, $r = 5(1 + \cos\theta)$ #15. $r = -4\sin\theta$, r = 2 Find the area described:

- #16. One petal of $r = 4\sin(2\theta)$
- #17. The inner loop of $r = 2 4\cos\theta$
- #18. The area within both polar curves: $r = 5 + 4\sin\theta$, r = 3
- #19. The area between the polar curves: $r = 5 + 4\sin\theta$, r = 3
- #20. The area between the polar curves and below the x-axis: $r = 4\cos\theta$, $r = 8\cos\theta$

Find the arc length of the curve:

- #21. The part of the cardioid $r = 3 3\cos\theta$ which is below the x-axis.
- #22. One time around the entire curve of $r = 4\sin(3\theta)$.