\qquad
9.4 Worksheet

Period: \qquad
Plot the (r, θ) polar coordinate and find the corresponding rectangular (x, y) coordinate.

1. $\left(8, \frac{\pi}{2}\right)$
2. $\left(-2, \frac{5 \pi}{3}\right)$
3. $\left(7, \frac{5 \pi}{4}\right)$
4. $\left(-2, \frac{11 \pi}{6}\right)$

The rectangular (x, y) coordinate is given. Plot the coordinate, then find two sets of polar coordinates in $0 \leq \theta \leq 2 \pi$.
5. $(2,2)$
6. $(0,-6)$
7. $(-3,4)$
8. $(3,-2)$

Covert the rectangular equation to polar form and sketch its graph.
9. $x^{2}+y^{2}=9$
10. $x^{2}-y^{2}=9$
11. $x^{2}+y^{2}=a^{2}$
13. $y=8$
15. $3 x-y+2=0$
17. $y^{2}=9 x$
12. $x^{2}-y^{2}=a^{2}$
14. $x=12$
16. $x y=4$
18. $\left(x^{2}+y^{2}\right)^{2}-9\left(x^{2}-y^{2}\right)=0$

Covert the polar equation to rectangular form and sketch its graph.
19. $r=4$
20. $r=-5$
21. $r=3 \sin (\theta)$
22. $r=5 \cos (\theta)$
23. $r=\theta$
24. $\theta=\frac{5 \pi}{6}$

Find the points of vertical and horizontal tangency (if any) to the polar curve.
25. $r=1-\sin (\theta)$

Sketch a graph of the polar equation by hand.
26. $r=1+\sin (\theta)$
27. $r=4(1+\cos (\theta)$
\qquad
9.5 Worksheet

Period: \qquad
Write an integral that represents the area of the entire enclosed figure.

1. $r=4 \sin (\theta)$
2. $r=\cos (2 \theta)$

Find the area of the region.
3. Interior of $r=6 \sin (\theta)$
4. Interior of $r=3 \cos (\theta)$
5. One petal of $r=\sin (2 \theta)$
6. One petal of $r=\cos (5 \theta)$

Graph the polar equation on a calculator, then find the area analytically.
7. Inner loop of $r=1+2 \cos (\theta)$
8. Inner loop of $r=2-4 \cos (\theta)$

Find the points of intersection of the graphs of the equations.
9. $r=1+\cos (\theta)$
10. $r=3(1+\sin (\theta))$

$$
r=1-\cos (\theta)
$$

$r=3(1-\sin (\theta))$
11. $r=4-5 \sin (\theta)$
12. $r=3+\sin (\theta)$
$r=3 \sin (\theta)$

$$
r=2 \csc (\theta)
$$

Use a calculator to graph, then find the area analytically.
13. Common interior of $r=3-2 \sin (\theta)$ and $r=-3+2 \sin (\theta)$.
14. Common interior of $r=4 \sin (\theta)$ and $r=2$.
15. Inside $r=2 \cos (\theta)$ and outside $r=1$.

Use your graphing calculator to graph and find the arc length.
16. $r=2 \theta, 0 \leq \theta \leq 2 \pi$
17. $r=\sin (3 \cos (\theta)), \quad 0 \leq \theta \leq \pi$

Convert the equation to polar form and sketch the curve:
\#1. $9 x^{2}+9 y^{2}=18 y$
\#2. $y=3$
\#3. $y=x^{2}$

Convert the equation to rectangular form and sketch the curve:
\#4. $r=3$
\#5. $r+6 \cos \theta-2 \sin \theta=\frac{6}{r}$
\#6. $r=8 \sin \theta$
\#7. $r=\cot \theta \csc \theta$
\#8. $\theta=\frac{\pi}{3}$

Graph the polar equation curve and find an interval for which the graph is traced only once:
\#9. $r=4-3 \cos \theta$
\#10. $r=5$
\#11. $r=4 \cos (3 \theta)$

For which values of θ do the following curves intersect?
\#12. $r=5+4 \sin \theta, \quad r=3$
\#13. $r=4 \cos \theta, \quad r=8 \cos \theta$
\#14. $r=5(1-\cos \theta), \quad r=5(1+\cos \theta)$
\#15. $r=-4 \sin \theta, \quad r=2$

Find the area described:
\#16. One petal of $r=4 \sin (2 \theta)$
\#17. The inner loop of $r=2-4 \cos \theta$
\#18. The area within both polar curves: $r=5+4 \sin \theta, \quad r=3$
\#19. The area between the polar curves: $r=5+4 \sin \theta, \quad r=3$
\#20. The area between the polar curves and below the x-axis: $r=4 \cos \theta, \quad r=8 \cos \theta$

Find the arc length of the curve:
\#21. The part of the cardioid $r=3-3 \cos \theta$ which is below the x -axis.
\#22. One time around the entire curve of $r=4 \sin (3 \theta)$.

