These problems provide an overview, but we recommend that you also review all homework problems from the unit.
\#1) Given the cost function $C(x)=680+4 x+0.01 x^{2}$ and the function that determines the number of units produced as a function of the selling price $p, x(p)=6000-500 p$, find the production level that will maximize profit.
\#2) Find the local and absolute extrema values of the function on the given interval:

$$
f(x)=x^{2} e^{-x}, \quad[0,3]
$$

\#3) Evaluate the limit: $\lim _{x \rightarrow \infty} \frac{\ln (\ln x)}{\ln x}$
\#4) The figure shows the graph of the derivative f ' of a function f.
(a) On what intervals is f increasing or decreasing?
(b) For what values of x does f have a local maximum or minimum?

\#5) Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

$$
f(x)=\frac{x}{x+2}, \quad[1,4]
$$

\#6) The graph of f ' is shown in the figure. Sketch the graph of f if f is continuous and $f(0)=-1$.

\#7) Given the graph of the derivative of f sketch a possible curve for f

\#8) (multiple choice) The graph of $y=x^{4}+8 x^{3}-72 x^{2}+4$ is concave down for which interval:
(A) $-6<x<2$
(B) $x>2$
(C) $x<-6$
(D) $-3-3 \sqrt{5}<x<-3+3 \sqrt{5}$
(E) $x<-3-3 \sqrt{5}$ or $x>-3+3 \sqrt{5}$
\#9) Evaluate the limit: $\lim _{x \rightarrow 1} x^{\frac{1}{1-x}}$
\#10) Evaluate the limit: $\lim _{x \rightarrow 0} \frac{\ln (1-x)+x+\frac{1}{2} x^{2}}{x^{3}}$
\#11) (multiple choice) If $f(x)=\frac{x^{2}+5 x-24}{x^{2}+10 x+16}$, then $\lim _{x \rightarrow-8} f(x)=$
(A) 0
(B) 1
(C) $-\frac{3}{2}$
(D) $\frac{11}{6}$
(E) Nonexistent
\#12) A rectangular solid (with a square base) has a surface area of $337.5 \mathrm{~cm}^{2}$.
Find the dimensions that will result in a solid with maximum volume.
\#13) A city recreation department plans to build a rectangular playground having an area of $3600 \mathrm{~m}^{2}$ and surround it by a fence. How can this be done using the least amount of fencing?
\#14) A rectangular solid (with a square base) must have a volume of $200 \mathrm{~m}^{3}$.
Find the dimensions that will result in a minimum fabrication cost if the material on the top and bottom costs $\$ 10 / \mathrm{m}^{2}$ and the material on the sides costs $\$ 6 / \mathrm{m}^{2}$.

