\qquad
These problems provide an overview of the unit but we recommend that you also review all homework problems from the unit.
\#1) If $f(x)=\frac{x}{1+2 x}$, find the slope of the tangent line at $\left(-\frac{1}{4},-\frac{1}{2}\right)$ and use it to write the equation of the tangent line to the curve.
\#2) Find the slope of the tangent line to the curve $y=9-2 x^{2}$ at the point $(2,1)$. Find an equation of this tangent line.
\#3) The displacement (in meters) of an object moving in a straight line is given by $s=1+2 t+\frac{t^{2}}{4}$, where t is measured in seconds.
(a) Find the average velocity over the following time periods:
(i) $[1,3]$
(ii) $[1,2]$
(iii) $[1,1.5]$ (iv) $[1,1.1]$
(b) Find the instantaneous velocity when $t=1$.
\#4) Find values for a and b that will make f continuous everywhere, if $f(x)=\left\{\begin{array}{cc}3 x+1, & x<2 \\ a x+b, & 2 \leq x<5 \\ x^{2}, & 5 \leq x\end{array}\right.$
\#5) The graph of $f(x)$ is given below. For which value(s) of x is $f(x)$ not differentiable? Justify your answer(s).

\#6) Given:

$$
f(x)=\left\{\begin{array}{cc}
1, & x \leq-1 \\
-x, & -1<x<0 \\
1, & x=0 \\
-x, & 0<x<1 \\
1, & x \geq 1
\end{array}\right.
$$

(a) Find the right-hand and left-hand limits of f at $x=-1,0$, and 1 .
(b) Does f have a limit as x approaches -1? 0? 1?

If so, what is it? If not, why not?
(c) Is f continuous at $x=-1$? 0 ? 1? Explain.
\#7) Find the average rate of change of $f(x)=1+\sin x$ over the interval $\left[0, \frac{\pi}{2}\right]$.
\#8) Let $f(x)=x^{2}-3 x$ and $P=(1, f(1))$.
Find (a) the slope of the curve $y=f(x)$ at P,
(b) an equation of the tangent at P, (c) an equation of the normal at P.
\#9) Is there a number that is exactly 4 more than its cube?
\#10) Which of the following values is the average rate of change of $f(x)=\sqrt{x+1}$ over the interval $[0,3]$?
(multiple choice): a) -3
b) -1
c) $-1 / 3$
d) $1 / 3$
e) 3
\#11) Which of the following statements is false for the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{3}{4} x, & 0 \leq x<4 \\
2, & x=4 \\
-x+7, & 4<x \leq 6 \\
1, & 6<x<8
\end{array}\right.
$$

(multiple choice):
a) $\lim _{x \rightarrow 4} f(x)$ exists
b) $f(4)$ exists
c) $\lim _{x \rightarrow 6} f(x)$ exists
d) $\lim _{x \rightarrow 8^{-}} f(x)$ exists
e) f is continuous at $x=4$
\#12) Which of the following is an equation for the tangent line to $f(x)=9-x^{2}$ at $x=2$? (multiple choice):
a) $y=\frac{1}{4} x+\frac{9}{2}$
b) $y=-4 x+13$
c) $y=-4 x-3$
d) $y=4 x-3$
e) $y=4 x+13$
\#13) (a) If $f(x)=e^{-x^{2}}$, estimate the value of $f^{\prime}(1)$ graphically and numerically.
(b) Find an approximate equation of the tangent line to the curve $f(x)=e^{-x^{2}}$ at the point where $x=1$
(c) Illustrate part (b) by graphing the curve and the tangent line on the same axes.
\#14) Given the graph of f, sketch a graph of its derivative.

\#15) Sketch the graph of f, then sketch the derivative of f.

$$
f(x)=\left\{\begin{array}{cc}
0, & x \leq 0 \\
x & x>0
\end{array}\right.
$$

\#16) Given the graph of f, sketch a graph of its derivative.

\#17) Given the graph of f, sketch a graph of its derivative.

