Calculus 2 - Unit 10 Part 2 REVIEW

Find the Maclaurin series for the given function (use the elementary forms table):

1) $g(x)=\frac{1}{x^{5}}$
2) $g(x)=\sin \left(2-x^{3}\right)$
3) $g(x)=\frac{1}{3+x^{2}}$

Writing first 5 terms of a power expansion for the given function (use the elementary forms table):
4) $f(x)=\cos \left(3 x^{5}\right)$
5) $f(x)=\sin (4 x-3)$

Find the specified Maclaurin or Taylor polynomial (for these you must use the definitions):
6) Find the $n=5$ Maclaurin polynomial for the function $f(x)=\sin (3 x)$
7) Find the $n=4$ Taylor polynomial centered at $\mathrm{c}=2$ for the function $f(x)=\ln (x)$
8) Find the $n=4$ Maclaurin polynomial for the function $f(x)=x e^{x}$
9) Find the $n=4$ Taylor polynomial centered at $\mathrm{c}=9$ for the function $f(x)=\sqrt{x}$
10) Find the $n=5$ Maclaurin polynomial for the function $f(x)=e^{3 x}$
11) Determine the degree of the Maclaurin polynomial centered at 0 required to approximate $f(0.4)$ for the function $f(x)=\sin (x)$ for the error to be less than 0.0002 .
12) Determine the degree of the Maclaurin polynomial centered at 1 required to approximate $f(1.4)$ for the function $f(x)=\ln (x)$ for the error to be less than 0.0002 .
13) Determine the degree of the Maclaurin polynomial centered at 0 required to approximate $f(0.7)$ for the function $f(x)=e^{x}$ for the error to be less than 0.0004 .
14) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{2 n}}{(2 n)!}$ (consider the endpoints).
15) Find the interval of convergence of the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-4)^{n}}{n 9^{n}}$ (consider the endpoints).
16) Find the interval of convergence of the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-1)^{n+1}}{n+1}$ (consider the endpoints).
17) If $f(x)=\sum_{n=1}^{\infty} \frac{x^{2 n}}{2 n+1}$ find the interval of convergence for (a) $f(x) \quad$ (b) $f^{\prime}(x) \quad$ (c) $\int f(x) d x$

