AP Calculus BC
Unit 1 Review (Precalculus topics) - NO CALCULATORS
\qquad
Date: \qquad Per: \qquad
Please show work so we can see how you find your solutions.

Function Notation and Composition of Functions:

\#1. Let $f(x)=x-2$ and $g(x)=x^{3}$. Find $g(f(4))$.
\#2. Express the function $F(x)=\tan ^{3}(x)$ in the form $f(g(x))$.

$$
\begin{aligned}
& f(x)= \\
& \mathrm{g}(x)=
\end{aligned}
$$

\#3. If If $f(x)=2 x^{2}-5 x$, write $\frac{f(x+h)-f(x)}{h}$ in simplest form.
\#4. Use the table to find the value of the function or composition at the given x .

\boldsymbol{x}	$\mathbf{- 3}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$
$\boldsymbol{f}(\boldsymbol{x})$	3	4	-1	-2	-1	5
$\boldsymbol{g}(\boldsymbol{x})$	5	17	0	4	-3	-1

$$
g(-1)=\ldots \quad f(g(5))=\ldots \quad f(f(7))=
$$

\#5. Multiple Choice: Relative to the graph $y=\cos x$, the graph of $y=3 \ln (x+2)$ is changed in what way?
A) Shifted 2 units downward
E) Shifted 2 units upward
B) Compressed horizontally by a factor of 3
F) Shifted 2 units to the right and stretched 3 times vertically
C) Shifted 2 units to the right
G) Shifted 2 units to the left and stretched 3 times vertically
D) Stretched vertically by a factor of 3
H) Shifted 2 units to the left

Domain/Range and Interval notation:

\#6. State the domain and range of this function:

\#7. Multiple Choice: The function $f(x)=\frac{x-2}{x-5}+\sqrt{(x-3)(x+2)}$ has as its domain all values of x such that
A) $(-\infty, 2) \cup(2,3) \cup(3,5)$
B) $[3,5) \cup(5, \infty)$
C) $(-\infty, 0) \cup[5, \infty)$
D) $(-\infty, 0) \cup(3,5) \cup(5, \infty)$
E) $[3,5]$
F) $(3,5) \cup(5, \infty)$
G) $(-\infty, 0) \cup(5, \infty)$
H) $(-\infty, 0) \cup[3,5) \cup(5, \infty)$
\#8. Multiple Choice: Let $f(x)=\sqrt{x+2}$ and $g(x)=\sqrt{x^{2}-9}$. Find the domain of $(f g)(x)$.
A) $(-\infty,-3) \cup(3, \infty)$
B) $(2, \infty)$
C) $(-\infty,-2)$
D) $[3, \infty)$
E) $(-\infty,-3] \cup[3, \infty)$
F) $[2, \infty)$
G) $(-\infty,-2]$
H) $(3, \infty)$

Factoring and Completing the Square:
\#9. Factor completely: $x^{2}+x-42$
\#10. Factor completely: $5 x^{2}-13 x+6$
\#11. Factor completely: $3 x^{4}-48 x^{2}$
\#12. Complete the square to write the equation in the form of a circle: $x^{2}+y^{2}+4 x-8 y+19=0$

Exponent Rules and Logarithms:

\#13. Write in simplest form: $3 a^{2} 4 b^{-4} a^{6} b^{4} c^{3}$
\#14. Write in simplest form without using a fraction or negative exponents: $\frac{2 e^{-3 x}}{5 e^{-7 x}}$
\#15. Simplify the logarithmic expression into one logarithm: $\quad 4 \log _{3}(x)+\log _{3}(y)-3 \log _{3}(z)+\frac{1}{2} \log _{3}(x)$
\#16. Expand the logarithmic expression to the sum and/or difference of factors of logarithms with no exponents. $\ln \left(\frac{5 y^{4}}{x^{6}}\right)$

Unit Circle Trigonometry and Basic Trig Identities:

\#17. Evaluate (answer in exact form, no decimals): $\cos \left(\frac{-\pi}{3}\right)=$
\#18. Evaluate (answer in exact form, no decimals): $\cot \left(\frac{7 \pi}{6}\right)=$
\#19. Evaluate (answer in exact form, no decimals): $\csc \left(\frac{5 \pi}{3}\right)=$
\#20. Evaluate (answer in exact form, no decimals): $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=$
\#21. Evaluate (answer in exact form, no decimals): $\sin \left[\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]=$
\#22. Simplify fully: $\frac{3 \sin ^{3} \theta}{\cos \theta}+3 \sin \theta \cos \theta$

Solving equations:

\#23. Solve the equation (Exact answers only): $\frac{x^{2}-4}{3}=\frac{x}{4}$
\#24. Solve the equation (Exact answers only): $4 x^{2}+x-3=0$
\#25. Solve the equation (Exact answers only): $\quad e^{2 x+6}=4$
\#26. Solve the equation (Exact answers only): $\ln (3 x-1)=5$
\#27. Solve the equation (Exact answers only): $\quad 4 \cos (\theta)-2=0 \quad(0 \leq \theta<2 \pi)$
\#28. Solve the equation (Exact answers only): $\quad 2 \sin ^{2}(\theta)+3 \sin (\theta)-2=0 \quad(0 \leq \theta<2 \pi)$

