Name: ______ Date: ______ Per: _____

Please show work so we can see how you find your solutions.

Function Notation and Composition of Functions:

Unit 1 Review (Precalculus topics) - NO CALCULATORS

#1. Let f(x) = x - 2 and $g(x) = x^3$. Find g(f(4)).

#2. Express the function $F(x) = \tan^3(x)$ in the form f(g(x)).

#3. If If
$$f(x) = 2x^2 - 5x$$
, write $\frac{f(x+h) - f(x)}{h}$ in simplest form.

#4. Use the table to find the value of the function or composition at the given x.

x	-3	-1	0	3	5	7
f(x)	3	4	-1	-2	-1	5
g(x)	5	17	0	4	-3	-1

$$g(-1) = ____ f(g(5)) = ____ f(f(7)) = ____$$

- #5. Multiple Choice: Relative to the graph $y = \cos x$, the graph of $y = 3\ln(x+2)$ is changed in what way?
 - A) Shifted 2 units downward
 - B) Compressed horizontally by a factor of 3
 - C) Shifted 2 units to the right
 - D) Stretched vertically by a factor of 3
- E) Shifted 2 units upward
- F) Shifted 2 units to the right and stretched 3 times vertically
- G) Shifted 2 units to the left and stretched 3 times vertically
- H) Shifted 2 units to the left

Domain/Range and Interval notation:

#6. State the domain and range of this function:

#7. Multiple Choice: The function $f(x) = \frac{x-2}{x-5} + \sqrt{(x-3)(x+2)}$ has as its domain all values of x such that

- A) $(-\infty, 2) \cup (2, 3) \cup (3, 5)$ E) [3, 5]B) $[3, 5) \cup (5, \infty)$ F) $(3, 5) \cup (5, \infty)$
- C) $(-\infty,0) \cup [5,\infty)$ G) $(-\infty,0) \cup (5,\infty)$
- D) $(-\infty, 0) \cup (3, 5) \cup (5, \infty)$ H) $(-\infty, 0) \cup [3, 5) \cup (5, \infty)$

#8. Multiple Choice: Let $f(x) = \sqrt{x+2}$ and $g(x) = \sqrt{x^2-9}$. Find the domain of (fg)(x).

 A) $(-\infty, -3) \cup (3, \infty)$ E) $(-\infty, -3] \cup [3, \infty)$

 B) $(2, \infty)$ F) $[2, \infty)$

 C) $(-\infty, -2)$ G) $(-\infty, -2]$

 D) $[3, \infty)$ H) $(3, \infty)$

Factoring and Completing the Square:

#9. Factor completely: $x^2 + x - 42$

#10. Factor completely: $5x^2 - 13x + 6$

#11. Factor completely: $3x^4 - 48x^2$

#12. Complete the square to write the equation in the form of a circle: $x^2 + y^2 + 4x - 8y + 19 = 0$

Exponent Rules and Logarithms:

#13. Write in simplest form: $3a^24b^{-4}a^6b^4c^3$

#14. Write in simplest form without using a fraction or negative exponents: $\frac{2e^{-3x}}{5e^{-7x}}$

#15. Simplify the logarithmic expression into one logarithm:

$$4\log_3(x) + \log_3(y) - 3\log_3(z) + \frac{1}{2}\log_3(x)$$

#16. Expand the logarithmic expression to the sum and/or difference of factors of logarithms with no exponents.

Unit Circle Trigonometry and Basic Trig Identities:

#17. Evaluate (answer in exact form, no decimals): $\cos\left(\frac{-\pi}{3}\right) =$

#18. Evaluate (answer in exact form, no decimals):
$$\cot\left(\frac{7\pi}{6}\right) =$$

#19. Evaluate (answer in exact form, no decimals): $\csc\left(\frac{5\pi}{3}\right) =$

#20. Evaluate (answer in exact form, no decimals): $\sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) =$

#21. Evaluate (answer in exact form, no decimals): $\sin\left[\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right] =$

#22. Simplify fully: $\frac{3\sin^3\theta}{\cos\theta} + 3\sin\theta\cos\theta$

Solving equations:

#23. Solve the equation (Exact answers only):

$$\frac{x^2-4}{3} = \frac{x}{4}$$

#24. Solve the equation (Exact answers only): $4x^2 + x - 3 = 0$

#25. Solve the equation (Exact answers only): $e^{2x+6} = 4$

#26. Solve the equation (Exact answers only): $\ln(3x-1) = 5$

#27. Solve the equation (Exact answers only): $4\cos(\theta) - 2 = 0$ $(0 \le \theta < 2\pi)$

#28. Solve the equation (Exact answers only): $2\sin^2(\theta) + 3\sin(\theta) - 2 = 0$ $(0 \le \theta < 2\pi)$