AP Calculus BC - Study Guide

Trigonometry...

Reciprocal identities:

$$\sin x =$$

$$\cos x =$$

$$\tan x =$$

$$\csc x =$$

$$\sec x =$$

$$\cot x =$$

Reciprocal identities:

$$\tan x =$$

$$\cot x =$$

Pythagorean identities:

$$\sin^2 x + \cos^2 x =$$

$$1 + \tan^2 x =$$

$1+\cot^2 x=$

Power-reducing identities:

$$\sin^2(x) =$$

$$\cos^2(x) =$$

Double-angle identities:

$$\sin(2x) =$$

$$\sin x = \frac{1}{\csc x}$$

$$\cos x = \frac{1}{\sec x}$$

$$\tan x = \frac{1}{\cot x}$$

$$\csc x = \frac{1}{\sin x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\cot x = \frac{1}{\tan x}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\sin^2 x + \cos^2 x = 1$$

$$1+\tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) =$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

Curve shapes (sketch)...

$$f(x) = x^2$$

$$f(x) = x^3$$

$$f(x) = x^3$$

$$f(x) = x^3$$

$$f(x) = e^x$$

$$f(x) = e^x$$

$$f(x) = \ln(x)$$

$$f(x) = \ln(x)$$

$$f(x) = \sqrt{x}$$

$$f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x}$$

$$f(x) = \sin(x)$$

$$f(x) = \sin(x)$$

$$f(x) = \cos(x)$$

$$f(x) = \cos(x)$$

$$f(x) = |x|$$

Conic sections...

Convert to standard form and sketch:

$$x^2 - 6x - 8y - 7 = 0$$

$$9x^2 + 4y^2 - 36x + 8y + 4 = 0$$

$$9x^2 - 4y^2 - 18x - 16y + 29 = 0$$

Parabola:

$$x^{2}-6x-8y-7=0$$

$$x^{2}-6x+9=8y+7+9=$$

$$(x-3)^{2}=8y+16$$

$$(x-3)^{2}=8(y+2)$$

$$(x-h)^{2}=4p(y-k)$$

(h,k) = vertex p = distance vertex to focus and directrix

Focus

Vertex

Ellipse :

$$9x^{2} + 4y^{2} - 36x + 8y + 4 = 0$$

$$9(x^{2} - 4x) + 4(y^{2} + 2y) = -4$$

$$9(x^{2} - 4x + 4) + 4(y^{2} + 2y + 1) = -4 + 36 + 4$$

$$9(x - 2)^{2} + 4(y + 1)^{2} = 36$$

$$\frac{(x - 2)^{2}}{4} + \frac{(y + 1)^{2}}{9} = 1$$

$$\frac{(x - h)^{2}}{a^{2}} + \frac{(y - k)^{2}}{b^{2}} = 1$$

$$(h, k) = center \quad a = dist. center to vertex in x$$

$$b = dist. center to curve in y$$

Circle:

special case of ellipse with a=b:

$$\frac{(x-2)^2}{4} + \frac{(y+1)^2}{4} = 1$$
$$(x-2)^2 + (y+1)^2 = 4$$

Hyperbola:

$$9x^{2} - 4y^{2} - 18x - 16y + 29 = 0$$

$$9(x^{2} - 2x) - 4(y^{2} + 4y) = -29$$

$$9(x^{2} - 4x + \frac{1}{2}) + 4(y^{2} + 2y + \frac{4}{2}) = -4 + \frac{9}{2} + -\frac{16}{2}$$

$$9(x - 1)^{2} - 4(y + 2)^{2} = -36$$

$$4(y + 2)^{2} - 9(x - 1)^{2} = 36$$

$$\frac{(y + 2)^{2}}{9} - \frac{(x + 2)^{2}}{4} = 1$$

$$\frac{(y - k)^{2}}{a^{2}} - \frac{(x - h)^{2}}{b^{2}} = 1$$

(h,k) = center a = dist. center to vertex on transverse axis b = dist. center to edge of asymptote box

Limits and Continuity...

What must be true for $\lim_{x \to c} f(x)$ to exist?

$$\lim_{x \to c^{-}} f(x) = L = \lim_{x \to c^{+}} f(x)$$
where L is a finite number

What must be true for f(x) to be continuous at c?

- 1) f(c) must exist
- 2) $\lim_{x \to c^{-}} f(x) = L = \lim_{x \to c^{+}} f(x)$ limit must exist

3)
$$f(c) = L$$

Evaluation tactics...(evaluate these limits):

$$\lim_{x\to 2}\frac{x-3}{x^2-7}$$

Plug in:

$$\lim_{x \to 2} \frac{x-3}{x^2 - 7} = \frac{(2)-3}{(2)^2 - 7} = \frac{-1}{-3} = \frac{1}{3}$$

$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5}$$

Factor and cancel:

$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} \left(\frac{0}{0} \right) = \lim_{x \to 5} \frac{(x - 5)(x + 5)}{x - 5} = \lim_{x \to 5} (x + 5) = 10$$

$$\lim_{x\to 9} \frac{x^2 - 81}{\sqrt{x} - 3}$$

Rationalize:

$$\lim_{x \to 9} \frac{x^2 - 81}{\sqrt{x} - 3} = \lim_{x \to 9} \frac{\left(x^2 - 81\right)\left(\sqrt{x} + 3\right)}{\left(\sqrt{x} - 3\right)\left(\sqrt{x} + 3\right)}$$

$$= \lim_{x \to 9} \frac{\left(x - 9\right)\left(x + 9\right)\left(\sqrt{x} + 3\right)}{x - 9} = \lim_{x \to 9} \left(x + 9\right)\left(\sqrt{x} + 3\right) = (18)(6)$$

What is L'Hopital's Rule?

If
$$\lim_{x\to c} \frac{f(x)}{g(x)}$$
 is indeterminant form $\frac{0}{0}$ or $\frac{\pm\infty}{\pm\infty}$

then
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Evaluate using L'Hopital's rule:

$$\lim_{x \to \infty} \frac{2x^2 - x}{x^2 + x}$$

$$\lim_{x\to\infty}e^{-x}\sqrt{x}$$

$$\lim_{x\to 0} \left(1 + \frac{x}{2}\right)^{\cot x}$$

Special memorized limits:

$$\lim_{x\to 0}\frac{\sin x}{x} =$$

$$\lim_{x\to 0}\frac{1-\cos x}{x}=$$

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x =$$

$$\lim_{x\to\infty} (1+x)^{1/x} =$$

$$\lim_{x \to \infty} \frac{2x^2 - x}{x^2 + x} \left(\frac{\infty}{\infty}\right)$$

$$= \lim_{x \to \infty} \frac{4x - 1}{2x + 1} = \lim_{x \to \infty} \frac{4}{2} = 2$$

$$\lim_{x\to\infty}e^{-x}\sqrt{x}\ (0\bullet\infty)$$

$$= \lim_{x \to \infty} \frac{\sqrt{x}}{e^x} \left(\frac{\infty}{\infty} \right) = \lim_{x \to \infty} \frac{\frac{1}{2} x^{-\frac{1}{2}}}{e^x} = \lim_{x \to \infty} \frac{1}{2\sqrt{x}e^x} = \frac{1}{\infty} = 0$$

function raised to a function? Ln of both sides...

$$y = \lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\cot x}$$

$$\ln(y) = \ln\left(\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\cot x} \right) = \lim_{x \to 0} \left[\ln\left(\left(1 + \frac{x}{2}\right)^{\cot x}\right) \right]$$

$$\ln(y) = \lim_{x \to 0} \left[\cot(x) \ln\left(\left(1 + \frac{x}{2}\right)\right) \right] \left(\frac{\cos 0}{\sin 0} \ln 1 = \infty \cdot 0\right)$$

$$\ln(y) = \lim_{x \to 0} \left[\frac{\ln\left(\left(1 + \frac{x}{2}\right)\right)}{\tan(x)} \right] \left(\frac{0}{0}\right) l' Hopital's rule...$$

$$\ln(y) = \lim_{x \to 0} \left[\frac{\frac{1}{1 + \frac{x}{2}} \left(\frac{1}{2}\right)}{\sec^2(x)} \right] = \frac{\left(\frac{1}{2}\right)}{\left(\frac{1}{(\cos 0)^2}\right)} = \frac{1}{2}$$

$$y = e^{\frac{1}{2}} = \sqrt{e}$$

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

$$\lim_{x\to 0}\frac{1-\cos x}{x}=0$$

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to \infty} (1+x)^{1/x} = e^{-x}$$

Horizontal asymptotes occur when...

Horizontal asymptotes occur when...

$$\lim_{x \to +\infty} f(x) = any \ constant$$

Vertical asymptotes occur when...

Vertical asymptotes occur when...

$$\lim_{x \to c} f(x) = \pm \infty$$

(whenever the function's y value is approaching infinity as x approaches a number – usually at uncancelled zeros in the denominator of rational functions)

Derivatives...

Average rate of change of f(x) =

(from x = a to x = b)

Average rate of change of $f(x) = \frac{f(b) - f(a)}{b - a}$

Instantaneous rate of change of f(x) at x is...

Instantaneous rate of change of f(x) at x f'(x)

Limit definition of derivative, f'(x) =

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivative shortcuts...

$$\frac{d}{dx}[c] =$$

$$\frac{d}{dx}[x^n] =$$

$$\frac{d}{dx}[e^x] =$$

$$\frac{d}{dx} [a^x] =$$

$$\frac{d}{dx} \left[\ln(x) \right] =$$

$$\frac{d}{dx} \Big[\log_b(x) \Big] =$$

$$\frac{d}{dx} \left[\sin(x) \right] =$$

$$\frac{d}{dx} [\cos(x)] =$$

$$\frac{d}{dx} \left[\tan(x) \right] =$$

$$\frac{d}{dx} \left[\tan(x) \right] =$$

$$\frac{d}{dx} \left[\sec(x) \right] =$$

$$\frac{d}{dx}[\csc(x)] =$$

$$\frac{d}{dx} \Big[\cot(x) \Big] =$$

$$\frac{d}{dx} \Big[\sin^{-1}(x) \Big] =$$

$$\frac{d}{dx} \Big[\tan^{-1} (x) \Big] =$$

$$\frac{d}{dx} \Big[\sec^{-1}(x) \Big] =$$

$$\frac{d}{dx}[c] = 0$$

$$\frac{d}{dx} \left[x^n \right] = nx^{n-1}$$

$$\frac{d}{dx} \left[e^x \right] = e^x$$

$$\frac{d}{dx} \left[a^x \right] = a^x \ln(a)$$

$$\frac{d}{dx} \Big[\ln(x) \Big] = \frac{1}{x}$$

$$\frac{d}{dx} \Big[\log_b(x) \Big] = \frac{1}{x \ln(b)}$$

$$\frac{d}{dx} \left[\sin(x) \right] = \cos(x)$$

$$\frac{d}{dx} \left[\cos(x)\right] = -\sin(x)$$

$$\frac{d}{dx} \left[\tan(x) \right] = \sec^2(x)$$

$$\frac{d}{dx} \left[\tan(x) \right] = \sec^2(x)$$

$$\frac{d}{dx} \left[\sec(x) \right] = \sec(x) \tan(x)$$

$$\frac{d}{dx}\left[\csc(x)\right] = -\csc(x)\cot(x)$$

$$\frac{d}{dx} \left[\cot(x)\right] = -\csc^2(x)$$

$$\frac{d}{dx}\left[\sin^{-1}(x)\right] = \frac{1}{\sqrt{1-x^2}} \left(\frac{d}{dx}\left[\cos^{-1}(x)\right] = \frac{-1}{\sqrt{1-x^2}}\right)$$

$$\frac{d}{dx}\left[\tan^{-1}(x)\right] = \frac{1}{1+x^2} \left(\frac{d}{dx}\left[\cot^{-1}(x)\right] = \frac{-1}{1+x^2}\right)$$

$$\frac{d}{dx}\left[\sec^{-1}(x)\right] = \frac{1}{|x|\sqrt{x^2 - 1}} \left(\frac{d}{dx}\left[\csc^{-1}(x)\right] = \frac{-1}{|x|\sqrt{x^2 - 1}}\right)$$

Antiderivative shortcuts...

$$\int 0 dx =$$

$$\int c dx =$$

$$\int x^n dx =$$

$$\int e^x dx =$$

$$\int e^{ax} dx =$$

$$\int a^x dx =$$

$$\int \frac{1}{x} dx =$$

$$\int \sin(x) dx =$$

$$\int \cos(x) dx =$$

$$\int \sec^2(x) \, dx =$$

$$\int \tan(x) dx =$$

$$\int \sec(x)\tan(x)\,dx =$$

$$\int \csc^2(x) \, dx =$$

$$\int \cot(x) \, dx =$$

$$\int \csc(x)\cot(x)\,dx =$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} =$$

$$\int \frac{1}{a^2 + x^2} =$$

$$\int \frac{1}{x\sqrt{x^2 - a^2}} =$$

$$\int 0 dx = C$$

$$\int c \, dx = cx + C$$

$$\int x^n dx =$$

$$\int e^x dx = e^x + C$$

$$\int e^{ax} dx = \frac{e^{ax}}{a} + C$$

$$\int a^x dx = \frac{a^x}{\ln(a)} + C$$

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

$$\int \sin(x) \, dx = -\cos(x) + C$$

$$\int \cos(x) \, dx = \sin(x) + C$$

$$\int \sec^2(x) \, dx = \tan(x) + C$$

$$\int \tan(x) dx = \ln|\sec(x)| + C = -\ln|\cos(x)| + C$$

$$\int \sec(x)\tan(x)\,dx = \sec(x) + C$$

$$\int \csc^2(x) dx = -\cot(x) + C$$

$$\int \cot(x) dx = -\ln|\csc(x)| + C = \ln|\sin(x)| + C$$

$$\int \csc(x)\cot(x) dx = -\csc(x) + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a}\right) + C$$

$$\int \frac{1}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$$

$$\int \frac{1}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \left(\frac{x}{a}\right) + C$$

Derivative properties/procedures...

$$\frac{d}{dx}[cx] =$$

$$\frac{d}{dx}[f(x)\pm g(x)]=$$

$$\frac{d}{dx}[f(x)g(x)] = \text{(product rule)}$$

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$$
 (quotient rule)

$$\frac{d}{dx}[f(g(x))] = \text{ (chain rule)}$$

1) Implicit differentiation:

ex: Find
$$\frac{dy}{dx}$$
 for $xy^3 + 3x^2 = 4 - y^5$

2) Logarithmic differentiation:

ex: Find
$$\frac{dy}{dx}$$
 for $y = x^{(5x^3 + 2x)}$

$$\frac{d}{dx}[cx] = c\frac{d}{dx}[x]$$
 (constants can be moved out)

$$\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} [f(x)] \pm \frac{d}{dx} [g(x)]$$
(derivative of each term separately)

$$\frac{d}{dx} [f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
(1st times deriv. of 2nd plus 2nd times deriv. of 1st)

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

(low-dhigh minus high-dlow over low squared)

$$\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)$$

(deriv. of outside (with same inside) times deriv. of inside)

1) Implicit differentiation:

$$x\frac{d}{dx} \left[y^{3} \right] + y^{3} \frac{d}{dx} \left[x \right] + \frac{d}{dx} \left[3x^{2} \right] = \frac{d}{dx} \left[4 \right] - \frac{d}{dx} \left[y^{5} \right]$$

$$x \left(3y^{2} \frac{dy}{dx} \right) + y^{3} \left(1 \right) + 6x = 0 - 5y^{4} \frac{dy}{dx}$$

$$\frac{dy}{dx} \left(3xy^{2} + 5y^{4} \right) = -6x - y^{3}$$

$$\frac{dy}{dx} = \frac{-6x - y^{3}}{3xy^{2} + 5y^{4}}$$

2) Logarithmic differentiation:

$$\ln(y) = \ln(x^{5x^3 + 2x})$$

$$\ln(y) = (5x^3 + 2x)\ln(x)$$

$$\frac{d}{dx} \left[\ln(y)\right] = \frac{d}{dx} \left[(5x^3 + 2x)\ln(x)\right]$$

$$\frac{d}{dx} \left[\ln(y)\right] = (5x^3 + 2x)\frac{d}{dx} \left[\ln(x)\right] + \ln(x)\frac{d}{dx} \left[(5x^3 + 2x)\right]$$

$$\frac{1}{y}\frac{dy}{dx} = (5x^3 + 2x)\frac{1}{x} + \ln(x)(15x^2 + 2)$$

$$\frac{dy}{dx} = \left[(5x^3 + 2x)\frac{1}{x} + \ln(x)(15x^2 + 2)\right]y$$

$$\frac{dy}{dx} = \left[(5x^3 + 2x)\frac{1}{x} + \ln(x)(15x^2 + 2)\right]x^{(5x^3 + 2x)}$$

Integral properties/procedures...

$$\int c f(x) dx =$$

$$\int \left[f(x) \pm g(x) \right] dx =$$

$$\int_{a}^{a} f(x) dx =$$

1) u-substitution (integral version of chain rule)

ex:
$$\int x \cos(x^2) dx$$

2) by parts (integral version of product rule)

ex:
$$\int x \ln(x) dx$$

3) trigonometric integrals

ex:
$$\int \sin^3 x \cos^3 x \, dx$$

 $\int c f(x) dx = c \int f(x) dx$ (constants can be moved out)

$$\int [f(x) \pm g(x)] dx = \int [f(x)] dx \pm \int [g(x)] dx$$
(can split into separate integrals for each term)

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

1) u-substitution (integral version of chain rule)

$$\int x \cos\left(x^2\right) dx \quad u = x^2$$

$$\frac{du}{dx} = 2x, \quad du = 2xdx, \quad xdx = \frac{1}{2}du$$

substitute into original integral:

$$\int \cos(u) \frac{1}{2} du = \frac{1}{2} \int \cos(u) du = \frac{1}{2} \sin(u) = \frac{1}{2} \sin(x^2) + C$$

2) by parts (integral version of product rule)

$$\int x \ln(x) dx \quad u = \ln(x) \qquad dv = x dx$$

$$\frac{du}{dx} = \frac{1}{x} \qquad \int dv = \int x dx$$

$$du = \frac{1}{x} dx \qquad v = \frac{1}{2} x^2$$

substitute into pattern:

$$uv - \int v \, du = \left(\ln(x)\right) \left(\frac{1}{2}x^2\right) - \int \frac{1}{2}x^2 \frac{1}{x} \, dx$$
$$= \frac{1}{2}x^2 \ln(x) - \frac{1}{2}\int x \, dx$$
$$= \frac{1}{2}x^2 \ln(x) - \frac{1}{4}x^2 + C$$

3) trigonometric integrals

$$\int \sin^3 x \cos^3 dx \quad (split off something to form du)$$

$$\int \sin^3 x \cos^2 x \cos x dx$$

$$\int \sin^3 x (1 - \sin^2 x) \cos x dx$$

$$\int (\sin^3 x - \sin^5 x) \cos x dx$$

$$\int \sin^3 x \cos x dx - \int \sin^5 x \cos x dx$$

$$u = \sin x, \frac{du}{dx} = \cos x, \quad \cos x dx = du$$

$$\int u^3 du - \int u^5 du$$

$$\frac{1}{4}u^4 - \frac{1}{6}u^6 + C = \frac{1}{4}\sin^4 x - \frac{1}{6}\sin^6 x + C$$

4) trigonometric substitution

$$ex: \int \frac{1}{x^3 \sqrt{x^2 - 1}} dx$$

4) trigonometric substitution

$$\tan \theta = \frac{\sqrt{x^2 - 1}}{1}$$

$$\tan \theta = \frac{\sqrt{x^2 - 1}}{1}$$

$$x = \frac{1}{\cos \theta} = \sec \theta \qquad \sqrt{x^2 - 1} = \tan \theta$$

$$\frac{dx}{d\theta} = \sec \theta \tan \theta \qquad dx = \sec \theta \tan \theta d\theta$$

5) partial fraction expansion

ex:
$$\int \frac{1}{x^2 - 5x + 6} dx$$

5) partial fraction expansion

$$\int \frac{1}{x^2 - 5x + 6} dx \qquad \frac{1}{(x - 3)(x - 2)} = \frac{A}{x - 3} + \frac{B}{x - 2}$$

$$\int \frac{1}{(x - 3)(x - 2)} dx \qquad A(x - 2) + B(x - 3) = 1$$

$$Ax - 2A + Bx - 3B = 1$$

$$(A + B)x + (-2A - 3B) = (0)x + (1)$$

$$system: \begin{cases} A + B = 0 \\ -2A - 3B = 1 \end{cases} \qquad A = 1, B = -1$$

$$1\int \frac{1}{x - 3} dx - 1\int \frac{1}{x - 2} dx$$

$$\ln|x - 3| - \ln|x - 2| + C = \ln\left|\frac{x - 3}{x - 2}\right| + C$$

6) complete the square to arctan form

ex:
$$\int \frac{1}{x^2 - 4x + 13} dx$$

6) complete the square to arctan form

$$\int \frac{1}{x^2 - 4x + 13} dx \qquad x^2 - 4x + \frac{4}{3} + 13 - \frac{4}{3}$$

$$(x - 2)^2 + 9$$

$$\int \frac{1}{(x - 2)^2 + 9} dx \quad now \, u - sub \colon u = x - 2, \, \frac{du}{dx} = 1, \, du = dx$$

$$\int \frac{1}{u^2 + 3^2} dx$$

$$\frac{1}{3} \tan^{-1} \left(\frac{u}{3}\right) + C = \frac{1}{3} \tan^{-1} \left(\frac{x - 2}{3}\right) + C$$

Improper Integrals:

$$\int_{1}^{\infty} \frac{1}{x^2} dx =$$

$$\int_{1}^{\infty} \frac{1}{x} dx =$$

$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \left[-\frac{1}{b} - \left(-\frac{1}{1} \right) \right] = -\frac{1}{\infty} + 1 = 0 + 1 = 1$

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to \infty} \left[\ln|b| - (\ln|1|) \right] = \infty - 0 = \infty$$

(integral may converge to a number, or diverge)

Theorems...

What is the Intermediate Value Theorem?

Intermediate Value Theorem

If f is continuous on [a,b], $f(a) \neq f(b)$, and k is any number between f(a) and f(b), then there is at least one number c in [a,b] such that f(c) = k.

Note: This theorem doesn't provide a method for finding the value(s) c, and doesn't indicate the number of c values which map to k, it only guarantees the existence of at least one number c such that f(c) = k.

What is the Mean Value Theorem?

Mean Value Theorem

Let f be continuous on [a,b], and differentiable on (a,b), then there exists a number c in (a,b)

such that
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
.

In other words, you can find a mean (average) rate of change across and interval, and there is some input value where the instantaneous rate of change equals the mean rate of change.

(Special case when slope = 0 is called 'Rolle's Theorem')

What is the Squeeze Theorem?

Squeeze Theorem

If $h(x) \le f(x) \le g(x)$ for all x in an open interval containing c, except possibly at c itself, and if $\lim_{x \to c} h(x) = L = \lim_{x \to c} g(x)$ then $\lim_{x \to c} f(x)$ exists and is equal to L.

Different representational forms of relationships...

Rectangular:
$$y = f(x)$$
 Parametric:
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

Convert to rectangular form and sketch:

$$\begin{cases} x = 2t \\ y = 4t + 3 \end{cases}$$

$$\begin{cases} x = 1 + 2\cos t \\ y = -2 + 3\sin t \end{cases}$$

<u>Polar</u>:

Formulas for converting polar - rectangular:

$$x =$$

$$y =$$

$$x^2 + y^2 =$$

$$\tan \theta =$$

Convert to rectangular form:

$$\begin{cases} x = 2t \\ y = 4t + 3 \end{cases}$$
 eliminate parameter by substitution

$$t = \frac{1}{2}x$$
, $y = 4\left(\frac{1}{2}x\right) + 3$, $y = 2x + 3$

(include direction arrows)

$$\begin{cases} x = 1 + 2\cos t \\ y = -2 + 3\sin t \end{cases} \quad use \sin^2 t + \cos^2 t = 1$$
$$\cos t = \frac{x - 1}{2}, \quad \sin t = \frac{y + 2}{3}$$
$$\frac{(x - 1)^2}{4} + \frac{(y + 2)^2}{9} = 1 \quad (ellipse)$$

Formulas for converting polar - rectangular:

$$x = r\cos\theta$$

$$y = r \sin \theta$$

$$x^2 + y^2 = r^2$$

$$\tan \theta = \frac{y}{x}$$

Convert to rectangular form and sketch:

$$r = 8 \sin \theta$$

$$\theta = \frac{5\pi}{6}$$

Convert to rectangular form:

$$r = 8\sin\theta$$

$$r^2 = 8r \sin \theta$$

$$x^2 + v^2 = 8v$$

$$x^2 + y^2 - 8y = 0$$

$$x^2 + (y-4)^2 + 16$$

$$\theta = \frac{5\pi}{6}$$

$$\tan\theta = \tan\left(\frac{5\pi}{6}\right)$$

$$\frac{y}{x} = \frac{\sin\left(\frac{5\pi}{6}\right)}{\cos\left(\frac{5\pi}{6}\right)} = \frac{\left(\frac{1}{2}\right)}{\left(\frac{-\sqrt{3}}{2}\right)} = \frac{1}{-\sqrt{3}}$$

$$y = \frac{1}{-\sqrt{3}}x$$

Vectors:

 $\overrightarrow{a} = \langle a_x, a_y \rangle$, a distance of $|\overrightarrow{a}|$ in direction θ

Formulas for vector $(\overrightarrow{a} = \langle a_x, a_y \rangle)$:

Formulas for vectors:

magnitude of $a = \begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} =$

magnitude of $a = |\overrightarrow{a}| = \sqrt{(a_x)^2 + (a_y)^2}$

components:

$$a_{r} =$$

$$a_{v} =$$

components:

$$a_x = \left| \overrightarrow{a} \right| \cos \theta$$

$$a_y = \left| \overrightarrow{a} \right| \sin \theta$$

Vectors are equal if...

Find the vector from (1,3) to (9,4)

Vectors are equal if...their component values are equal.

$$\overrightarrow{a} = \langle 9-1, 4-3 \rangle = \langle 8,1 \rangle$$

Vector-valued functions:

Input is a parameter (typically, t), output is a vector

Example: position vector: $\overrightarrow{r}(t) = \langle x(t), y(t) \rangle$

Vector-valued functions:

Input is a parameter (typically, t), output is a vector

Example: position vector: $\overrightarrow{r}(t) = \langle x(t), y(t) \rangle$

Arithmetic operations and properties for different representations...

Multiplication by a constant...

$$3\langle 6, -3 \rangle =$$

$$\lim_{x \to 2} 3f(x) =$$

$$\lim_{x \to 2} 3f(x) = 3\lim_{x \to 2} f(x)$$

$$\frac{d}{dx} [3f(x)] =$$

$$\int 3f(x) dx =$$

$$\int 3f(x) dx = 3 \int f(x) dx$$

$$\sum_{x \to 2} 3a_{n} = 3 \sum_{x \to 2} a_{n}$$

In general, multiplication of objects other than numbers is not straightforward (derivative of function multiplied requires product rule, integral requires integration by parts, multiplication of a vector by another vector not defined for this class, cannot multiply two series in summation form.)

Addition/subtraction...

$$\langle 8,1 \rangle - \langle 2,5 \rangle =$$

$$\langle 8,1 \rangle - \langle 2,5 \rangle = \langle 8-2, 1-5 \rangle = \langle 6, -4 \rangle$$

$$\lim_{x \to c} \left(x^3 - \frac{1}{x} \right) = \lim_{x \to c} x^3 - \lim_{x \to c} \frac{1}{x}$$

$$\frac{d}{dx} \left[x^3 - \sin(x) \right] =$$

$$\int \left(x^3 - \cos(x) \right) dx =$$

$$\int \left(x^3 - \cos(x) \right) dx = \frac{1}{4} x^4 - \sin(x) + C$$

$$\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$$

PEMDAS still applies...

$$2\langle 8,1\rangle - 3\langle 2,5\rangle$$

$$2\langle 8,1\rangle - 3\langle 2,5\rangle$$

$$\langle 16,2\rangle - \langle 6,15\rangle \quad \text{multiplication before addition}$$

$$\langle 16-6,\ 2-15\rangle = \langle 10,-13\rangle$$

For vectors things like limits, derivatives, or integrals apply separately to each term:

$$\lim_{t \to 4} \left(\left\langle t^2, t^3 \right\rangle \right) = \lim_{t \to 4} \left(\left\langle t^2, t^3 \right\rangle \right) = \left\langle \lim_{t \to 4} t^2, \lim_{t \to 4} t^3 \right\rangle$$

$$\frac{d}{dx} \left[\left\langle t^2, t^3 \right\rangle \right] = \left\langle 2t, 3t^2 \right\rangle$$

$$\int \left\langle t^2, t^3 \right\rangle dt = \int \left\langle t^2, t^3 \right\rangle dt = \left\langle \frac{1}{3} t^3 + C_1, \frac{1}{4} t^4 + C_2 \right\rangle = \left\langle \frac{1}{3} t^3, \frac{1}{4} t^4 \right\rangle + \overrightarrow{C}$$

For limits:

$$\lim_{x \to c} \left[f(x) \right]^n =$$

$$\lim_{x\to c} \left[\sqrt[n]{f(x)} \right] =$$

$$\lim_{x \to c} \left[f(x) \right]^n = \left[\lim_{x \to c} f(x) \right]^n$$

$$\lim_{x \to c} \left[\sqrt[n]{f(x)} \right] = \sqrt[n]{\lim_{x \to c} f(x)}$$

Derivatives in parametric form $\begin{cases} x = t^2 - 3t \\ y = \sin(t) \end{cases}$:

$$\frac{dy}{dx} =$$

$$\frac{d^2y}{dx^2} =$$

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\cos(t)}{2t - 3}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dx} \left[\frac{\cos(t)}{2t-3} \right]}{(2t-3)} = \frac{(2t-3)(-\sin(t)) - \cos(t)2}{(2t-3)^2}$$

Derivatives in polar form $r = 4\sin(\theta)$:

$$\frac{dy}{dx} =$$

$$\frac{dy}{dx}$$
 is the slope of the tangent line on the x-y plane.

$$x = r \cos \theta = 4 \sin \theta \cos \theta$$
 $y = r \sin \theta = 4(\sin \theta)^2$

$$\frac{dx}{d\theta} = (4\sin\theta)(-\sin\theta) + \cos\theta(4\cos\theta) = -4\sin^2\theta + 4\cos^2\theta$$

$$\frac{dy}{d\theta} = 8\sin\theta\cos\theta$$

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{8\sin\theta\cos\theta}{-4\sin^2\theta + 4\cos^2\theta}$$

 $\frac{dy}{dx}$ is the slope of the tangent line on the x-y plane.

Horizontal tangents occur when...

Horizontal tangents occur when... $\frac{dy}{dx} = 0$

Vertical tangents occur when...

Vertical tangents occur when... $\frac{dy}{dx}$ is undefined

Intersections are always system solutions (find the intersections):

$$\begin{cases} y = x^2 - 6 \\ v = -x \end{cases}$$

$$\begin{cases} y = x^{2} - 6 \\ y = -x \end{cases}$$

$$x^{2} - 6 = -x \qquad x = -3, \quad x = 2$$

$$x^{2} + x - 6 = 0 \qquad y = -(-3) \quad y = -(2)$$

$$(x+3)(x-2) = 0 \qquad (-3,3) \qquad (2,-2)$$

$$\begin{cases} r = 3(1 + \sin \theta) \\ r = 3(1 - \sin \theta) \end{cases}$$

$$\begin{cases} r = 3(1+\sin\theta) \\ r = 3(1-\sin\theta) \end{cases}$$

$$3(1+\sin\theta) = 3(1-\sin\theta) \quad \theta = 0, \quad \theta = \pi$$

$$\sin\theta = -\sin\theta \qquad r = 3(1+\sin\theta) \qquad r = 3(1+\sin\pi)$$

$$2\sin\theta = 0 \qquad r = 3 \qquad r = 3$$

$$\sin\theta = 0 \qquad (r,\theta): (3,0) \qquad (3,\pi)$$

must also graph and check for r = 0 (*is an intersection here*):

$$for \ r = 3(1+\sin\theta) \to 0 = 3(1+\sin\theta), \sin\theta = -1, \theta = \frac{3\pi}{2}$$

$$for \ r = 3(1-\sin\theta) \to 0 = 3(1-\sin\theta), \sin\theta = 1, \theta = \frac{\pi}{2}$$

$$so\left(0, \frac{3\pi}{2}\right) \ and\left(0, \frac{\pi}{2}\right) \ (coincident, but \ not \ a \ 'collision' - different \ \theta)$$

$$\begin{cases} x_1 = 3\sin t \\ y_1 = 2\cos t \end{cases} \begin{cases} x_2 = 3 + \cos t \\ y_2 = 1 + \sin t \end{cases} \quad 0 \le t < 2\pi$$

$$\begin{cases} x_1 = 3\sin t & \begin{cases} x_2 = 3 + \cos t \\ y_1 = 2\cos t \end{cases} & \begin{cases} x_2 = 3 + \cos t \\ y_2 = 1 + \sin t \end{cases} & 0 \le t < 2\pi \end{cases}$$

$$x_1 = x_2 & y_1 = y_2$$

$$3\sin t = 3 + \cos t & 2\cos t = 1 + \sin t$$
by calculator graph: by calculator graph:
at t = 1.5708, t = 2.2143 at t = 0.6435, t = 4.7123
(these are intersections, but not 'collisions' - different t)

Applications of derivatives...

What do each of these tell us about f?

What do each of these tell us about f?

$$f(x)$$
 is

$$f(x)$$
 is the y-value at x

$$f'(x)$$
 is

$$f'(x)$$
 is the instantaneous rate of change ('slope') at x

$$f'(x) > 0$$
 f is increasing
 $f'(x) < 0$ f is decreasing

$$f''(x)$$
 is

$$f''(x)$$
 is the concavity ('curvature') at x

$$f''(x) > 0$$
 f is concave up

f''(x) < 0 f is concave down

Critical points occur when
$$f'(x) = 0$$
 or DNE and the sign of $f'(x)$ changes.

Inflection points occur when...

Inflection points occur when
$$f''(x) = 0$$
 or DNE and the sign of $f''(x)$ changes.

Relative (local) max occurs when...

Relative (local) max occurs when
$$f'(x) = 0$$
 or DNE and the sign of $f'(x)$ goes from + to -

Relative (local) min occurs when...

Relative (local) min occurs when f'(x) = 0 or DNE and the sign of f'(x) goes from - to +

Using a graph of the curve f

Where is f increasing? decreasing?

Where is f concave up? concave down?

Where is f continuous?

Where is f differentiable?

Where are the following for f?

- critical points
- relative maxima
- -relative minima
- inflection points

What are the absolute max/min over [-2,1]?

$$\int_{1}^{3} f(x) dx =$$

$$\int_{2}^{-4} f(x) dx =$$

Using a graph of the curve f

Graph of f

f is increasing over (0,2) [f going up] decreasing over $(-2,0) \cup (2,4)$ [f going down]

f is concave up over $(0,2) \cup (2,3)$ concave down over $(-2,0) \cup (3,4)$

f is continuous over $(-2,2) \cup (2,4)$

f is differentiable over $(-2,0) \cup (0,2) \cup (2,4)$

Where are the following for f? critical points at (-2,2), (0,0.5), (2.5,1) no relative maxima relative minima at (0,0.5) inflection points at (0,0.5), (3,1)

What are the absolute max/min over [-2,1]? Absolute min at (0,0.5), absolute max at (-2,2)

$$\int_{-4}^{3} f(x) dx = areas = 4 + 2 - \frac{\pi}{2} - 1 = 5 - \frac{\pi}{2}$$

$$\int_{3}^{-4} f(x) dx = -\int_{-4}^{3} f(x) dx = -5 + \frac{\pi}{2}$$

Using a graph of the derivative f'

Where is f increasing? decreasing?

Where is f concave up? concave down?

Where are the following for f?

- critical points
- relative maxima
- -relative minima
- inflection points

If f(2) = 1, then f(-5) =

Using a graph of the concavity f''

Where is f concave up? concave down?

Where inflection points for f?

Using a graph of the derivative f'

f is increasing over $(-5,-2) \cup (2,5)$ [f'>0]decreasing over (-2,2) [f'<0]

f is concave up over (0,5) [f' going up] concave down over (-5,0) [f' going down]

Where are the following for f? critical points at x=-2, x=2 [f' = 0] relative maxima at x = 2 [f' from - to +] relative minima at x = -2 [f' from + to -] inflection point at x = 0 [f' graph changing direction]

We can use the Net Change Theorem (part of the Fundamental Theorem of Calculus):

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

evaluate definite integral by plugging limits into antiderivative *This also means an integral of a derivative of something is equal to the accumulation* (*net change*) *in the value this is a derivative of :*

$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$

Pick one limit to be what you have and the other what you need:

$$\int_{-5}^{2} f'(x) dx = f(2) - f(-5)$$
 and evaluate integral using areas

$$3 - \frac{1}{2}\pi(2)^2 = 1 - f(-5), \qquad f(-5) = 1 - 3 + 2\pi = 2\pi - 2$$

Using a graph of the concavity f"

f is concave up over $(-1,2) \cup (4,6)$ [f''>0] concave down over $(-2,-1) \cup (2,4) [f''<0]$

Where inflection points for f? at x =-1, x=2, x=4 [f" = 0 and sign is changing]

Tangent lines...

Rectangular:

$$For(x-2)^2 + (y+3)^2 = 4$$

- (a) Write the equation of the tangent line at $(1, -3 + \sqrt{3})$
- (b) Where does this curve have horizontal tangents?
- (c) Where does this curve have vertical tangents?

$$For(x-2)^2 + (y+3)^2 = 4$$

(a) Write the equation of the tan gent line at $(1, -3 + \sqrt{3})$

$$m = \frac{dy}{dx}$$
 [use implicit differentiation if needed]:

$$2(x-2)(1)+2(y+3)\left(\frac{dy}{dx}\right)=0, \quad \frac{dy}{dx}=\frac{-x+2}{y+3}=\frac{-(1)+2}{\left(-3+\sqrt{3}\right)+3}=\frac{1}{\sqrt{3}}$$

$$(y-(-3+\sqrt{3}))=\frac{1}{\sqrt{3}}(x-1)$$

(b) Where does this curve have horizontal tangents?

where
$$\frac{dy}{dx} = 0$$
 (numerator = 0), $-x+2=0$, at $x = 2(2 \text{ points})$

(c) Where does this curve have vertical tangents?

where
$$\frac{dy}{dx} = DNE$$
 (denominator = 0), $y+3=0$, at $y=-3(2 \text{ points})$

Parametric:

$$For \begin{cases} x = 2t - \pi \sin t \\ y = 2 - \pi \cos t \end{cases}$$

- (a) Write the equation of the tangent line at $t = \frac{2\pi}{3}$
- (b) Where does this curve have horizontal tangents?
- (c) Where does this curve have vertical tangents?

$$For \begin{cases} x = 2t - \pi \sin t \\ y = 2 - \pi \cos t \end{cases}$$

(a) Write the equation of the tangent line at $t = \frac{2\pi}{3}$

$$m = \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\pi \sin t}{2 - \pi \cos t}\Big|_{t = \frac{2\pi}{3}} = \frac{\pi \left(\frac{\sqrt{3}}{2}\right)}{2 - \pi \left(-\frac{1}{2}\right)} = \frac{\frac{\sqrt{3}\pi}{2}}{\frac{2}{1} + \frac{\pi}{2}} = \frac{\sqrt{3}\pi}{4 + \pi} = 0.76193$$

$$x = 2\left(\frac{2\pi}{3}\right) - \pi \sin\left(\frac{2\pi}{3}\right) = \frac{4\pi}{3} - \pi \left(\frac{\sqrt{3}}{2}\right) = 1.4681$$

$$y = 2 - \pi \cos\left(\frac{2\pi}{3}\right) = 2 - \pi\left(-\frac{1}{2}\right) = 3.5708$$

$$(y-3.5708) = 0.76193(x-1.4681)$$

(b) Where does this curve have horizontal tangents?

where
$$\frac{dy}{dx} = 0$$
 (numerator = 0) $\pi \sin t = 0$

 $t = 0, t = \pi$ (and other values, use calculator)

(c) Where does this curve have vertical tangents?

where
$$\frac{dy}{dx} = DNE \ (denominator = 0) \ 2 - \pi \cos t = 0$$

t = -0.8807, t = 0.8807 (and other values, use calculator)

 $\overline{For r} = 4\sin\theta$

(a) Write the equation of the tangent line at $\theta = \frac{\pi}{3}$

(b) Where does this curve have horizontal tangents?

(c) Where does this curve have vertical tangents?

For $r = 4\sin\theta$

(a) Write the equation of the tangent line at $\theta = \frac{\pi}{3}$

$$m = \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dy}{d\theta}\right)}$$

and $x = r \cos \theta = 4 \sin \theta \cos \theta$, $y = r \sin \theta = 4(\sin \theta)^2$

$$\frac{dx}{d\theta} = 4\sin\theta(-\sin\theta) + \cos\theta(4\cos\theta)$$
 $\frac{dy}{d\theta} = 8\sin\theta\cos\theta$

$$\frac{dx}{d\theta} = 4\left(\cos^2\theta - \sin^2\theta\right) \quad \frac{dy}{d\theta} = 8\sin\theta\cos\theta$$

$$m = \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dy}{d\theta}\right)} = \frac{8\sin\theta\cos\theta}{4\left(\cos^2\theta - \sin^2\theta\right)}\Big|_{t=\frac{\pi}{3}} = \frac{8\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)}{4\left(\left(\frac{1}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2\right)}$$

$$=\frac{2\sqrt{3}}{-1}=-2\sqrt{3}=-3.464$$

$$x = 4\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{3}\right) = 4\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) = \sqrt{3} = 1.732$$

$$y = 4(\sin\theta)^2 = 4\left(\frac{\sqrt{3}}{2}\right)^2 = 3$$

$$(y-1.732) = -3.464(x-3)$$

(b) Where does this curve have horizontal tangents?

where
$$\frac{dy}{dx} = 0$$
 (numerator = 0) $8\sin\theta\cos\theta = 0$

$$\theta = 0, t = \frac{\pi}{2}$$
 (and other values, use calculator)

(c) Where does this curve have vertical tangents?

where
$$\frac{dy}{dx} = DNE \left(denominator = 0\right) 4\left(\cos^2\theta - \sin^2\theta\right) = 0$$

$$t = -0.7854, t = 0.7854$$
 (and other values, use calculator)

Position, Velocity (speed), Acceleration...

In 1D:

An object moves in one direction with position x given by $x(t) = t^3 - 4t^2 + 3$.

- (a) Find velocity as function of time.
- (b) What acceleration as a function of time.
- (c) What is the position of the particle at t = 2?
- (d) What is the speed of the particle at t = 2?

An object is launched upward with an initial velocity of $_{30\ m/s}$ from an initial height of $_{10\ m}$ in gravity field with $a(t) = -9.8\ m/s^2$.

- (a) Find velocity as a function of time.
- (b) Find height as a function of time.
- (c) At what time does the object reach maximum height and what is the max height?
- (d) At what time does the object hit the ground?

In 2D (vector/parametric):

An object moves in the xy-plane with:

a velocity vector
$$\overrightarrow{v}(t) = \langle t^3 - 5t^2, \cos t \rangle$$

...or could be given as parametric equations:

$$\begin{cases} x(t) = t^3 - 5t^2 \\ y(t) = \cos t \end{cases}$$

- (a) Find the position vector if $\overrightarrow{x}(0) = \langle 3, 0 \rangle$.
- (b) Find the acceleration vector.
- (c) What is the position, velocity, and acceleration of the object at t = 2?
- (d) What is the speed of the object at t = 2?

In 1D:

$$x(t) = t^3 - 4t^2 + 3$$

(a)
$$v(t) = x'(t) = 3t^2 - 8t$$

(b)
$$a(t) = v'(t) = 6t - 8$$

(c)
$$x(2) = (2)^3 - 4(2)^2 + 3 = -5$$
 (include units if given in problem)

(d) speed =
$$|v(2)| = |3(2)^2 - 8(2)| = |-4| = 4$$

$$a(t) = -9.8$$

(a)
$$v(t) = \int a(t) dt = \int (-9.8) dt = -9.8t + C_1$$

$$v(0) = 30$$
, so $30 = -9.8(0) + C_1$, $C_1 = 30$

$$v(t) = -9.8t + 30$$

(b)
$$x(t) = \int v(t) dt = \int (-9.8t + 30) dt = -4.9t^2 + 30t + C_2$$

$$x(0) = 10$$
, so $10 = -4.9(0)^2 + 30(0) + C_2$, $C_2 = 10$
 $x(t) = -4.9t^2 + 30t + 10$

(c) Max height when
$$v = 0$$
: $-9.8t + 30 = 0$, $t = 3.06122$ sec $x(3.06122) = 55.91837$ m

(d) On ground when
$$x = 0$$
: $-4.9t^2 + 30t + 10 = 0$

at
$$t = \frac{-30 \pm \sqrt{(30)^2 - 4(-4.9)(10)}}{2(-4.9)} = -0.3169$$
, 6.439 sec

In 2D (vector/parametric):

$$\overrightarrow{v}(t) = \langle t^3 - 5t^2, \cos t \rangle$$

$$(a) \stackrel{\rightarrow}{r}(t) = \left\langle \int \left(t^3 - 5t^2\right) dt, \int \left(\cos t\right) dt \right\rangle = \left\langle \frac{1}{4}t^4 + C_1, \sin t + C_2 \right\rangle$$

$$\overrightarrow{v}(0) = \langle 3, 0 \rangle \quad so \quad \langle 3, 0 \rangle = \left\langle \frac{1}{4}(0)^4 + C_1, \sin(0) + C_2 \right\rangle = \left\langle C_1, C_2 \right\rangle$$

$$C_1 = 3$$
, $C_2 = 0$, $\overrightarrow{r}(t) = \left\langle \frac{1}{4}t^4 + 3, \sin t \right\rangle$

$$(b) \stackrel{\rightarrow}{a}(t) = \left\langle \frac{d}{dx} \left[t^3 - 5t^2 \right], \frac{d}{dx} \left[\cos t \right] \right\rangle = \left\langle 3t^2 - 10t, -\sin t \right\rangle$$

(c)
$$\overrightarrow{r}(2) = \left\langle \frac{1}{4}(2)^4 + 3, \sin(2) \right\rangle = \left\langle 7, 0.9093 \right\rangle$$

$$\overrightarrow{v}(2) = \langle (2)^3 - 5(2)^2, \cos(2) \rangle = \langle -12, -0.4161 \rangle$$

$$\vec{a}(2) = \langle 3(2)^2 - 10(2), -\sin(2) \rangle = \langle -8, -0.9093 \rangle$$

(d) speed =
$$|\overrightarrow{v}(2)| = \sqrt{(-12)^2 + (-0.9093)^2} = 12.0344$$

NOTE: Polar is similar to vector / parametric, the parameter is just θ instead of t, with $x = r \cos \theta$, $y = r \sin \theta$.

Related Rates Problems...

A 5-foot long ladder is leaning against a building. If the foot of the ladder is sliding away from the building at a rate of 2 ft/sec, how fast is the top of the ladder moving and in what direction when the foot of the ladder is 4 feet from the building?

Draw a picture and assign variables to things which vary

$$x^2 + y^2 = 5^2$$

Anything changing is a derivative with respect to time (+ if value is increasing)

$$y$$
 x
 $\frac{dx}{dt} = +2$

$$\frac{dx}{dt} = +2$$

At this snapshot in time, variables have 'snaphot' values:

$$(4)^2 + y^2 = 5^2$$
, $y = 3$

Differentiate implicitly WRT time, plug in values, and solve:

$$x^2 + y^2 = 25$$

$$\frac{d}{dt}\left[x^2\right] + \frac{d}{dt}\left[y^2\right] = \frac{d}{dt}\left[25\right]$$

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

$$2(4)(2)+2(4)\frac{dy}{dt}=0$$

$$\frac{dy}{dt} = -\frac{16}{8} = -2 ft / \sec$$

negative b/c top of ladder is

moving so y is decreasing (downward)

Optimization Problems...

A cylindrical can (with circular base) is made with a material for the lateral side which costs \$3/cm², and a material for the top and bottom circular sides which costs \$5/cm². If the can must enclose a volume of 20π cm³ what should the radius and height be to minimize the material cost?

Need functions for the objective function (what is being optimized) and any constraints.

Objective Function

Constraint

$$Cost, C = (A_{lateral}) \left(\frac{\$3}{cm^3}\right) + (A_{top/bottom}) \left(\frac{\$5}{cm^3}\right)$$

$$C = (2\pi rh)(3) + (2)(\pi r^2)(5)$$
 $\pi r^2 h = 20\pi$

 $C = 6\pi rh + 10\pi r^2$ cost in terms of r and h

 $Now solve \ constraint \ for \ one \ variables, substitute \ into \ objective \ function:$

$$h = \frac{20\pi}{\pi r^2} = \frac{20}{r^2}$$
 so $C = 6\pi r \left(\frac{20}{r^2}\right) + 10\pi r^2 = 120\pi r^{-1} + 10\pi r^2$

Now find \min by taking derivative and finding where C'(r) = 0

$$C'(r) = -120\pi r^{-2} + 20\pi r = 0$$

$$20\pi r = \frac{120\pi}{r^2}$$
, $r^3 = \frac{120}{20} = 6$, $r = \sqrt[3]{6} = (6)^{\frac{1}{3}} = 1.81712 \text{ cm}$

Use constraint equation to find other dimension:

$$h = \frac{20}{r^2} = \frac{20}{(1.81712)^2} = 6.057 \ cm$$

Should use 2nd – derivative to verify this is a min not a max:

$$C''(r) = 240\pi r^{-3} + 20\pi$$
 is $+$ for $+$ r , so concave up, so this is a min.

Applications of integrals...

Use Fundamental Theorem of Calculus PT1 to evaluate the definite integral:

$$\int_{1}^{2} x^{2} dx =$$

Using the Fundamental Theorem of Calculus PT2 (net change theorem): The rate of change of the altitude of a hot-air balloon is given by $r(t) = t^3 - 4t^2 + 6 \quad (0 \le t \le 8)$. Find the change in altitude of the balloon during the time when the altitude is decreasing.

Using the Fundamental Theorem of Calculus PT2 to find a y-value from another given derivative: If $f'(x) = x^2 - 5x$, and f(1) = 2 find f(4).

Integral as inverse operation of derivative:

$$\frac{d}{dx} \left(\int_{2}^{3x^2} \left(t^3 - 4t \right) dt \right) =$$

$$\frac{d}{dx} \left(\int_{x^5}^{3x^2} \left(t^3 - 4t \right) dt \right) =$$

Average value of a function: If $f(x) = x^2 - 5x$ find the average value of f(x) over [2,6] Use Fundamental Theorem of Calculus PT1 to evaluate the definite integral:

$$\int_{1}^{2} x^{2} dx = \left[\frac{1}{3} x^{3} \right]_{1}^{2} = \left(\frac{1}{3} (2)^{3} \right) - \left(\frac{1}{3} (1)^{3} \right) = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

First graph r(t) in calculator and find that this rate is negative for 1.572 < t < 3.514Then, since r(t) is the derivative of altitude:

$$\int_{1.572}^{3.514} a'(t) dt = \int_{1.572}^{3.514} (t^3 - 4t^2 + 6) dt = a(3.514) - a(1.572)$$

is the change in altitude = -4.431 (Math 9)

$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$

$$\int_{1}^{4} \left(3x^{2} - \frac{5}{2}x\right) dx = f(4) - f(1)$$

$$\left[x^{3} - 5x^{2}\right]_{1}^{4} = f(4) - 2$$

$$\left((4)^{3} - 5(4)^{2}\right) - \left((1)^{3} - 5(1)^{2}\right) = f(4) - 2$$

$$-12 = f(4) - 2, \quad f(4) = -10$$

Integral as inverse operation of derivative:

$$\frac{d}{dx} \left(\int_{a}^{b(x)} f(t) dt \right) = f(b(x)) \cdot b'(x) \quad [chain rule]$$

$$\frac{d}{dx} \left(\int_{2}^{3x^{2}} (t^{3} - 4t) dt \right) = \left(\left(3x^{2} \right)^{3} - 4\left(3x^{2} \right) \right) \cdot (6x)$$

$$\frac{d}{dx} \left(\int_{a(x)}^{b(x)} f(t) dt \right) = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x)$$

$$\frac{d}{dx} \left(\int_{3}^{3x^{2}} (t^{3} - 4t) dt \right) = \left(\left(3x^{2} \right)^{3} - 4\left(3x^{2} \right) \right) \cdot (6x) - \left(\left(x^{5} \right)^{3} - 4\left(x^{5} \right) \right) \cdot (5x^{4})$$

Average value of a function:

average value of
$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$\frac{1}{6-2} \int_{2}^{6} (x^{2} - 5x) dx - \frac{1}{4} \left[\frac{1}{3} x^{3} - \frac{5}{2} x^{2} \right]_{0}^{6} = \frac{8}{3}$$

NOTE: This is different than 'average rate of change of f(x)'

which would instead be:
$$\frac{f(6)-f(2)}{6-2}$$

Riemann Sums (approximation of definite integral):

Use a left-endpoint Riemann Sum with two subintervals of equal length to approximate $\int\limits_2^{24} x^2 \ dx$

Does this estimate under- or over-estimate the value?

interval
$$\underline{x}_i$$
 $\underline{f(x_i)} \cdot \underline{\Delta x} = \underline{area}$

$$[2,2.2]$$
 2 $(2)^2 \cdot 0.2 = 0.8$

[2.2,2.4] 2.2
$$(2.2)^2 \cdot 0.2 = \underline{0.968}$$

1.7744

Use a right-endpoint Riemann Sum with two subintervals of equal length to approximate $\int\limits_2^{24} x^2 \ dx$

Does this estimate under- or over-estimate the value?

interval
$$\underline{x_i}$$
 $\underline{f(x_i)} \bullet \underline{\Delta x} = \underline{area}$

[2,2.2] 2.2
$$(2.2)^2 \cdot 0.2 = 0.968$$

[2.2,2.4] 2.4
$$(2.4)^2 \cdot 0.2 = \underline{1.152}$$

2.120

Use the trapezoidal rule with two subintervals of equal length to approximate $\int\limits_{2}^{24} x^2 \ dx$

$$A_{trapezoid} = \frac{1}{2} \Big(f \Big(x_{left} \Big) + f \Big(x_{right} \Big) \Big) \bullet \Delta x$$

interval A_{trapezoid}

$$[2,2.2]$$
 $\frac{1}{2}((2)^2+(2.2)^2) \cdot 0.2 = 0.884$

[2.2, 2.4]
$$\frac{1}{2} ((2.2)^2 + (2.4)^2) \cdot 0.2 = \underline{1.06}$$

Area between curves (rectangular):

Find the area enclosed by $f(x) = x^2$ and $g(x) = \sqrt{x}$.

$$A = \int_{a}^{b} H \, dx - \int_{a}^{b} h \, dx$$
$$= \int_{0}^{1} \sqrt{x} \, dx - \int_{0}^{1} x^{2} \, dx$$
$$= \int_{0}^{1} (\sqrt{x} - x^{2}) \, dx = 0.333$$

1.944

Area between curves (polar):

Find the area inside $r = 3\sin\theta$ and outside $r = 1 + \sin\theta$.

$$3\sin\theta = 1 + \sin\theta$$

$$2\sin\theta = 1$$

$$\sin\theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{6}, \theta = \frac{5\pi}{6}$$

$$A = \frac{1}{2} \int_{\alpha}^{\beta} R^2 d\theta - \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$$

$$= \frac{1}{2} \int_{\frac{\pi}{6}}^{5\pi/6} (3\sin\theta)^2 d\theta - \frac{1}{2} \int_{\frac{\pi}{6}}^{5\pi/6} (1+\sin\theta)^2 d\theta$$

$$= \frac{1}{2} \int_{\frac{\pi}{6}}^{5\pi/6} \left[(3\sin\theta)^2 - (1+\sin\theta)^2 \right] d\theta = 3.142$$

Volumes:

Find the volume formed by rotating the area enclosed by $f(x) = x^2$ and $g(x) = \sqrt{x}$ around y-axis (disc method).

 $disc\ method\ ('\ perpendiscular')$ $(rectangle\ \bot\ rotation\ axis)$

$$V = \int_{a}^{b} \pi R^{2} dh - \int_{a}^{b} \pi r^{2} dh$$

$$= \int_{a}^{b} \pi R^{2} dy - \int_{a}^{b} \pi r^{2} dy$$

$$= \int_{0}^{1} \pi (\sqrt{y})^{2} dy - \int_{0}^{1} \pi (y^{2})^{2} dy$$

$$= \pi \int_{0}^{1} (y - y^{4}) dy = 0.942$$

Find the volume formed by rotating the area enclosed

by $f(x) = x^2$ and $g(x) = \sqrt{x}$ around y-axis (shell method).

shell method ('parashell')
(rectangle || rotation axis)

$$V = \int_{a}^{b} 2\pi r H dr - \int_{a}^{b} 2\pi r h dr$$

$$= \int_{a}^{b} 2\pi r H dx - \int_{a}^{b} 2\pi r h dx$$

$$= \int_{0}^{1} 2\pi x (\sqrt{x}) dx - \int_{0}^{1} 2\pi x (x^{2}) dx$$

$$= 2\pi \int_{0}^{1} (x\sqrt{x} - x^{3}) dx = 0.942$$

Find the volume formed by rotating the area enclosed by $f(x) = x^2$ and $g(x) = \sqrt{x}$ around the line y = 1.

disc method (' perpendiscular')
(rectangle ⊥ rotation axis)

$$V = \int_{a}^{b} \pi R^{2} dh - \int_{a}^{b} \pi r^{2} dh$$

$$= \int_{a}^{b} \pi (1 - x^{2})^{2} dx - \int_{a}^{b} \pi (1 - \sqrt{x})^{2} dx$$

$$= \pi \int_{0}^{1} ((1 - x^{2})^{2} - (1 - \sqrt{x})^{2}) dx = 1.152$$

The region R enclosed by $f(x) = x^2$ and $g(x) = \sqrt{x}$ forms the base of a solid. For this solid, each cross section Perpendicular to the x-axis is a rectangle whose Height is 4 times the length of its base in region R. Find the volume of this solid.

Arclength (rectangular):

If
$$f(x) = \frac{x^3}{6} + \frac{1}{2x}$$
 find the length of this curve for $\frac{1}{2} \le x \le 1$.

Arclength (parametric):

Find the arclength of the curve $x = 6t^2$, $y = 2t^3$ over the interval $1 \le t \le 4$.

Arclength (polar):

Find the arclength of one petal of $r = 2\sin(3\theta)$.

$$arclength = \int_{a}^{b} \sqrt{1 + \left[f'(x) \right]^{2}} dx$$

$$f(x) = \frac{1}{6}x^{3} + \frac{1}{2}x^{-1}, \quad f'(x) = \frac{1}{2}x^{2} - \frac{1}{2}x^{-2}$$

$$= \int_{1/2}^{1} \sqrt{1 + \left[\frac{1}{2}x^{2} - \frac{1}{2}x^{-2} \right]^{2}} dx = 0.646$$

$$arclength = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$x = 6t^{2}, \quad \frac{dx}{dt} = 12t, \quad y = 2t^{3}, \quad \frac{dy}{dt} = 6t^{2}$$

$$arclength = \int_{1}^{4} \sqrt{\left(12t\right)^{2} + \left(6t^{2}\right)^{2}} dt = 156.525$$

$$arclength = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

$$one \ petal \ when \ r = 0:$$

$$2\sin(3\theta) = 0 \quad substitute: \phi = 3\theta$$

$$2\sin\phi = 0, \quad \sin\phi = 0, \quad \phi = 0, \pi$$

$$back \ substitute: \qquad 3\theta = 0 \quad 3\theta = \pi$$

$$\theta = 0, \quad \theta = \frac{\pi}{2}$$

Surface area of surface of revolution:

Find the area of the surface obtained by rotating The curve $y=x^3$, $0 \le x \le 2$ about the *x*-axis.

Displacement vs. total distance:

The velocity of a particle is given by $\vec{v}(t) = \langle 3t^2 - 8t, 3t^2 - 12 \rangle$. Find:

- (a) The displacement of the particle from t=1 to t=4.
- (b) The total distance traveled by the particle from t=1 to t=4.

Surface area of surface of revolution:

$$arclength = \int_{a}^{b} \sqrt{1 + \left[f'(x) \right]^{2}} dx$$

concept is: if you rotate each 'piece' of arc around the axis, this piece forms a 'strip' with surface area = $2\pi(d' \operatorname{arclength}')$, so:

surface area =
$$\int_{a}^{b} 2\pi r \sqrt{1 + \left[f'(x)\right]^2} dx$$
 and $r = f(x)$
 $f(x) = x^3$, $f'(x) = 3x^2$

surface area =
$$\int_{0}^{2} 2\pi x^{3} \sqrt{1 + \left[3x^{2}\right]^{2}} dx = 203.044$$

Displacement vs. total distance:

(a) total displacement =
$$\overrightarrow{r}(4) - \overrightarrow{r}(1)$$

$$\int_{1}^{4} \overrightarrow{r'}(t) dt = \int_{1}^{4} \overrightarrow{v}(t) dt = \overrightarrow{r}(4) - \overrightarrow{r}(1)$$

$$\int_{1}^{4} \langle 3t^{2} - 8t, 3t^{2} - 12 \rangle dt = \overrightarrow{r}(4) - \overrightarrow{r}(1)$$

$$\left\langle \int_{1}^{4} 3t^{2} - 8t dt, \int_{1}^{4} 3t^{2} - 12 dt \right\rangle = \overrightarrow{r}(4) - \overrightarrow{r}(1)$$

$$\left\langle \int_{1}^{4} 3t^{2} - 8t \, dt, \int_{1}^{4} 3t^{2} - 12 \, dt \right\rangle = \overrightarrow{r}(4) - \overrightarrow{r}(1)$$

$$\left\langle \left[t^{3} - 4t^{2} \right]_{1}^{4}, \left[t^{3} - 12t \right]_{1}^{4} \right\rangle = \overrightarrow{r}(4) - \overrightarrow{r}(1)$$

$$\left\langle 3, 27 \right\rangle = \overrightarrow{r}(4) - \overrightarrow{r}(1)$$

(b) total distance traveled =
$$\int_{a}^{b} |\overrightarrow{v}(t)| dt$$

$$|\overrightarrow{v}(t)| = \sqrt{(3t^2 - 8t)^2 + (3t^2 - 12)^2}$$
total distance traveled

$$= \int_{1}^{4} \sqrt{(3t^2 - 8t)^2 + (3t^2 - 12)^2} dt$$
41.655

Differential Equations...

Slope fields:

Sketch a slope field for $\frac{dy}{dx} = \frac{1}{2}xy$

Which of the following could be a specific solution to the Differential equation with the given slope field:

(A)
$$y = e^{-x}$$

(B) $y = \sin x$
(C) $y = \sqrt{x}$
(D) $y = \ln x$
(E) $y = e^{0.5x}$

Solving separable differential equations:

Find the particular solution for $\frac{dy}{dx} = 3x^2y$, y(2) = 1.

Euler's method:

f(x) is the solution to the differential equation $\frac{dy}{dx} = x^2y$, y(1) = 2. Use Euler's method with a step size of 0.1 to approximate f(1.3).

(h can be negative)

Slope fields:

plug various (x,y) into $\frac{dy}{dt}$ to get slopes at pts

solution curves follow the direction in slope field (E) [this is an exponential curve shape]

Solving separable differential equations:

Separate the variables: $\frac{1}{y}dy = 3x^2dx$

integrate both sides: $\int \frac{1}{y} dy = \int 3x^2 dx$

(general, implicit solution): $\ln |y| = x^3 + C$

plug in initial condition: $\ln(1) = (2)^3 + C$ solve for C: 0 = 8 + C, C = -8

write the particular, implicit solution:

$$\ln|y| = x^3 - 8$$

if needed, *solve for y* (*explicit solution*):

$$e^{\ln|y|} = e^{(x^3 - 8)}, \quad y = e^{(x^3 - 8)} = e^{-8}e^{x^3}$$

Euler's method:

$$\underbrace{\left(x,y\right)}_{n+1} = y_n + h \left(\frac{dy}{dx}\right)$$

$$(1,2)$$
 $y = 2 + (0.1)((1)^2(2)) = 2.2$

$$(1.1,2.2)$$
 $y = 2.2 + (0.1)((1.1)^2(2.2)) = 2.4662$

$$(1.2, 2.4662)$$
 $y = 2.4662 + (0.1)((1.2)^2(2.4662)) = 2.8213$

$$(1.3, 2.8213)$$
 $f(1.3) \approx 2.8213$

Differential Equation Models:

Write the differential equation and solution equations:

Unrestricted population growth:

Radioactive Decay:

Logistic Model Growth:

Unrestricted population growth example:

A rabbit population with an initial size of 500 grows at A rate proportional to its size. If there are 1200 rabbits At t = 10 days, when was the rabbit population 900?

Differential Equation Models:

Write the differential equation and solution equations:

Unrestricted population growth:

$$DE: \frac{dP}{dt} = kP$$
 solution: $P = P_0 e^{kt}$

Continuously compounded interest is same form:

$$\frac{dA}{dt} = kA$$
 $A = Pe^{rt}$

Radioactive Decay:

$$DE: \frac{dQ}{dt} = kQ$$
 solution: $Q = Q_0 e^{kt}$

(halflife = time for quantity to reduce by half)

Logistic Model Growth:

growth limited by environment

maximum population = carrying capacity, L

$$DE: \frac{dP}{dt} = kP\left(1 - \frac{P}{L}\right) \quad solution: P = \frac{L}{1 + Ce^{-kt}}$$

 $\left(population grows fastest when P = \frac{1}{2}L \right)$

$$\frac{dP}{dt} = kP$$
, solution: $P = P_0 e^{kt}$

$$P = 500e^{kt}$$
, use $P(10) = 1200$:

$$1200 = 500e^{k(10)}, e^{10k} = \frac{1200}{500}, \ 10k = \ln\left(\frac{1200}{500}\right)$$

$$k = 0.087547$$
, so $P = 500e^{0.087547t}$

Now, solve for t when P = 900:

$$900 = 500e^{0.087547t}, e^{0.087547t} = \frac{900}{500},$$

$$0.087547t = \ln\left(\frac{900}{500}\right), \ t = 6.714 \ days$$

Logistic growth example:

The number of moose in a national park is modeled by the function M(t) that satisfies the logistical

differential equation
$$\frac{dM}{dt} = \frac{3}{5}M - \frac{3}{1000}M^2$$
 and $M(0) = 50$.

- (a) What is $\lim_{t\to\infty}M\left(t\right)$?
- (b) What is the population of moose when the number of moose is growing most rapidly?
- (c) At what time does max rate of growth occur?

(a) logistic DE form:
$$\frac{dP}{dt} = kP\left(1 - \frac{P}{L}\right)$$

factoring to get the 1: $\frac{dM}{dt} = \frac{3}{5}M\left(1 - \frac{1}{200}M\right)$
 $\frac{dM}{dt} = \frac{3}{5}M\left(1 - \frac{M}{200}\right)$ so carrying capacity = 200

From curve shape, $\lim_{t\to\infty} M(t) = carrying \ capacity$

(b) Fastest growth for logistic occurs when population is half the carrying capacity:

When there are 100 moose.

(c) DE form:
$$\frac{dM}{dt} = \frac{3}{5}M\left(1 - \frac{M}{200}\right) = kP\left(1 - \frac{P}{L}\right)$$

solution form:
$$M = \frac{L}{1 + Ce^{-kt}} = \frac{200}{1 + Ce^{\frac{-3}{5}t}}$$

using initial condition: M(0) = 50:

$$50 = \frac{200}{1 + Ce^{-\frac{3}{5}(0)}} = \frac{200}{1 + C}, \ 1 + C = \frac{200}{50}, \ C = 3$$

final solution equation:
$$M = \frac{200}{1 + 3e^{-\frac{3}{5}t}}$$

Now, solve for time when M = 100:

$$100 = \frac{200}{1 + 3e^{\frac{-3}{5}t}}, \ 1 + 3e^{\frac{-3}{5}t} = \frac{200}{100}, \ 3e^{\frac{-3}{5}t} = 1,$$

$$-\frac{3}{5}t = \ln\left(\frac{1}{3}\right), \quad t = 1.831 \text{ years.}$$

Taylor Polynomials and Infinite Series...

Series convergence tests:

For each, state procedure (and conditions for use) result for convergence, result for divergence...

Series convergence tests:

nth-term test

nth term test

$$\lim_{n \to \infty} a_n \neq 0 \left[diverges \right]$$

(cannot be used to show convergence)

Geometric series

Geometric series

$$form: \sum_{n=0}^{\infty} ar^n$$

$$|r| < 1$$
 [converges]

$$|r| \ge 1$$
 [diverges]

p-series

p-series

$$form: \sum_{n=1}^{\infty} \frac{1}{n^p}$$

$$p>1$$
 [converges]

$$0 [diverges]$$

Alternating series test

Alternating series test

form:
$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$

$$1) \lim_{n \to \infty} a_n = 0 \quad and$$

$$(2) a_{n+1} \leq a_n \quad [converges]$$

if either not met, inconclusive

Alternating Series are absolutely convergent if...

$$\sum_{n=1}^{\infty} \left| \left(-1 \right)^{n-1} a_n \right| converges$$

$$\left(by \text{ theorem, } \sum_{n=1}^{\infty} (-1)^{n-1} a_n \text{ also converges} \right)$$

Alternating Series are conditionally convergent if...

$$\sum_{n=1}^{\infty} \left| \left(-1\right)^{n-1} a_n \right| \text{ diverges but } \sum_{n=1}^{\infty} \left(-1\right)^{n-1} a_n \text{ converges}$$

Integral test

Integral test

form:
$$\sum_{n=1}^{\infty} a_n \quad a_n = f(n) \quad f(n)$$
 terms positive and decreasing

evaluate
$$\int_{1}^{\infty} f(x) dx$$

if integral converges, series converges

if integral diverges, series diverges

Root test

Root test

$$\sum_{n=1}^{\infty} \sqrt[n]{|a_n|} < 1 \qquad [converges]$$

$$\sum_{n=1}^{\infty} \sqrt[n]{|a_n|} > 1 \text{ or } \infty \quad [diverges]$$

Ratio test

Ratio test

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1\qquad \quad [converges]$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \text{ or } \infty \quad \left[\text{diverges} \right]$$

Direct Comparison

Direct Comparison

if
$$0 < a_{orig} \le a_{new}$$
 and $\sum_{n=1}^{\infty} a_{new}$ converges, then $\sum_{n=1}^{\infty} a_{orig}$ converges

$$f \ 0 < a_{new} \le a_{orig} \ and \sum_{n=1}^{\infty} a_{new} \ diverges, then \sum_{n=1}^{\infty} a_{orig} \ diverges$$

Limit Comparison

Limit Comparison

If
$$\lim_{n\to\infty} \frac{a_{orig}}{a_{new}} > 0$$
 (a finite, positive number)

then series are 'linked' so...

If
$$\sum_{n=1}^{\infty} a_{new}$$
 converges, then $\sum_{n=1}^{\infty} a_{orig}$ converges

If
$$\sum_{n=1}^{\infty} a_{new}$$
 diverges, then $\sum_{n=1}^{\infty} a_{orig}$ diverges

Taylor Polynomials/Power Series...

Taylor Polynomial form:

Taylor Polynomial form:

$$P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n$$

Maclaurin means centered at
$$x = 0$$
.

Max Error (Lagrange Error)...

$$max error = \frac{f^{(n)}(z)}{(n+1)!}(x-c)^{n+1}$$

where $f^{(n)}(z)$ is max value of derivative

Memorized Power Series:

$$e^x =$$

$$\sin x =$$

$$\cos x =$$

Memorized Power Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

Find the radius of convergence of

$$\sum_{n=1}^{\infty} \frac{n+1}{2n+1} \frac{(x-3)^n}{2^n}$$

Find the radius of convergence of

ratio test:
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n+2}{2n+3} \frac{(x-3)^{n+1}}{2^{n+1}} \frac{2n+1}{n+1} \frac{2^n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n+2}{2n+3} \frac{(x-3)(x-3)^n}{2 2^n} \frac{2n+1}{n+1} \frac{2^n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} \frac{(n+2)(2n+1)}{2(2n+3)(n+1)} |x-3| = \lim_{n \to \infty} \frac{2n^2 + \dots + |x-3|}{4n^2 + \dots} |x-3|$$

$$\frac{1}{2} |x-3| < 1, \quad |x-3| = 2, \quad radius \ of \ convergence = 2$$

The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$.

Find a power series expansion for $\frac{x^2}{1-x^2}$

 $let \ u = x^2$

$$\frac{x^2}{1-x^2} = x^2 \frac{1}{1-u} = x^2 \sum_{n=0}^{\infty} u^n = x^2 \sum_{n=0}^{\infty} (x^2)^n = x^2 \sum_{n=0}^{\infty} x^{2n} = \sum_{n=0}^{\infty} x^2 x^{2n} = \sum_{n=0}^{\infty} x^{2n+2}$$
$$= x^2 + x^4 + x^6 + x^8 + \dots$$

The function f is defined by the power series

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots$$

Show that $1-\frac{1}{3!}$ approximates f(1) with an

error less than $\frac{1}{100}$

The Maclaurin series for the function f is given by

$$f(x) = \sum_{n=0}^{\infty} \left(-\frac{x}{4}\right)^n$$
. What is the value of $f(3)$?

 $\max error \le |first neglected term|$

$$\max error \le \left| \frac{x^4}{5!} \right|$$

$$\max error \le \left| \frac{\left(1\right)^4}{5!} \right| = 0.0083$$

$$0.0083 < \frac{1}{100}$$

$$f(3) = \sum_{n=0}^{\infty} \left(-\frac{3}{4}\right)^n$$
 is a Geometric series with $r = -\frac{3}{4}$

which converges to a sum of $\frac{a}{1-r} = \frac{1}{1-\left(-\frac{3}{4}\right)} = \frac{4}{7}$

So
$$f(3) = \frac{4}{7}$$
.

Other things to know...

Notation forms for first derivatives:

$$y'$$
, $f'(x)$, $\frac{dy}{dx}$, $\frac{d}{dx}[y]$, $D_x(y)$

Notation forms for higher-order derivatives:

$$y''$$
, $f''(x)$, $\frac{d^2y}{dx^2}$

$$y''', f'''(x), \frac{d^3y}{dx^3}$$

$$y^{(4)}, f^{(4)}(x), \frac{d^{(4)}y}{dx^{(4)}}$$

$$y^{(n)}, f^{(n)}(x), \frac{d^{(n)}y}{dx^{(4n)}}$$

Geometry Formulas:

Circles: area, A =circumference, C =

Triangles: A = $(b \perp h)$

Right – circular cylinders...

Surface Area = top / bottom + lateralVolume, V =Surface Area =

Notation forms for first derivatives:

$$y'$$
, $f'(x)$, $\frac{dy}{dx}$, $\frac{d}{dx}[y]$, $D_x(y)$

Notation forms for higher-order derivatives:

$$y''$$
, $f''(x)$, $\frac{d^2y}{dx^2}$

$$y''', \quad f'''(x), \quad \frac{d^3y}{dx^3}$$

$$y^{(4)}, f^{(4)}(x), \frac{d^{(4)}y}{dx^{(4)}}$$

$$y^{(n)}, f^{(n)}(x), \frac{d^{(n)}y}{dx^{(4n)}}$$

Geometry Formulas:

Circles: area, $A = \pi r^2$ circumference, $C = 2\pi r$

Triangles:
$$A = \frac{1}{2}bh$$
 $(b \perp h)$

Right - circular cylinders...

Surface Area = top/bottom+lateral Volume,
$$V = \pi r^2 h$$

Surface Area = $2(\pi r^2) + 2\pi rh$