## AP Calculus BC - Study Guide

Trigonometry...


Reciprocal identities:
$\sin x=$
$\cos x=$
$\tan x=$
$\csc x=$
$\sec x=$
$\cot x=$

Reciprocal identities:
$\tan x=$
$\cot x=$

Pythagorean identities:

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x= \\
& 1+\tan ^{2} x= \\
& 1+\cot ^{2} x=
\end{aligned}
$$

Power-reducing identities:

$$
\sin ^{2}(x)=
$$

$$
\cos ^{2}(x)=
$$

Double-angle identities:

$$
\begin{aligned}
& \sin (2 x)= \\
& \cos (2 x)=
\end{aligned}
$$

Curve shapes (sketch)...
$f(x)=x^{2}$
$f(x)=x^{3}$
$f(x)=e^{x}$
$f(x)=\ln (x)$
$f(x)=\sqrt{x}$
$f(x)=\frac{1}{x}$
$f(x)=\sin (x)$
$f(x)=\cos (x)$
$f(x)=\tan (x)$

## Conic sections...

Convert to standard form and sketch:
$x^{2}-6 x-8 y-7=0$
$9 x^{2}+4 y^{2}-36 x+8 y+4=0$
$9 x^{2}-4 y^{2}-18 x-16 y+29=0$

## Limits and Continuity...

What must be true for $\lim _{x \rightarrow c} f(x)$ to exist?

What must be true for $f(x)$ to be continuous at $c$ ?

Evaluation tactics...(evaluate these limits):
$\lim _{x \rightarrow 2} \frac{x-3}{x^{2}-7}$
$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}$
$\lim _{x \rightarrow 9} \frac{x^{2}-81}{\sqrt{x}-3}$

What is L'Hopital's Rule?

Evaluate using L'Hopital's rule:
$\lim _{x \rightarrow \infty} \frac{2 x^{2}-x}{x^{2}+x}$
$\lim _{x \rightarrow \infty} e^{-x} \sqrt{x}$
$\lim _{x \rightarrow 0}\left(1+\frac{x}{2}\right)^{\cot x}$

Special memorized limits:
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=$
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=$
$\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=$
$\lim _{x \rightarrow \infty}(1+x)^{1 / x}=$
Horizontal asymptotes occur when...

Vertical asymptotes occur when...

## Derivatives...

Average rate of change of $f(x)=$ (from $x=a$ to $x=b$ )

Instantaneous rate of change of $f(x)$ at x is...

Limit definition of derivative, $f^{\prime}(x)=$

Derivative shortcuts...
$\frac{d}{d x}[c]=$
$\frac{d}{d x}\left[x^{n}\right]=$
$\frac{d}{d x}\left[e^{x}\right]=$
$\frac{d}{d x}\left[a^{x}\right]=$
$\frac{d}{d x}[\ln (x)]=$
$\frac{d}{d x}\left[\log _{b}(x)\right]=$
$\frac{d}{d x}[\sin (x)]=$
$\frac{d}{d x}[\cos (x)]=$
$\frac{d}{d x}[\tan (x)]=$
$\frac{d}{d x}[\tan (x)]=$
$\frac{d}{d x}[\sec (x)]=$
$\frac{d}{d x}[\csc (x)]=$
$\frac{d}{d x}[\cot (x)]=$
$\frac{d}{d x}\left[\sin ^{-1}(x)\right]=$
$\frac{d}{d x}\left[\tan ^{-1}(x)\right]=$ $\frac{d}{d x}\left[\sec ^{-1}(x)\right]=$

Antiderivative shortcuts...
$\int 0 d x=$
$\int c d x=$
$\int x^{n} d x=$
$\int e^{x} d x=$
$\int e^{a x} d x=$
$\int a^{x} d x=$
$\int \frac{1}{x} d x=$
$\int \sin (x) d x=$
$\int \cos (x) d x=$
$\int \sec ^{2}(x) d x=$
$\int \tan (x) d x=$
$\int \sec (x) \tan (x) d x=$
$\int \csc ^{2}(x) d x=$
$\int \cot (x) d x=$
$\int \csc (x) \cot (x) d x=$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}}=$
$\int \frac{1}{a^{2}+x^{2}}=$
$\int \frac{1}{x \sqrt{x^{2}-a^{2}}}=$

Derivative properties/procedures...
$\frac{d}{d x}[c x]=$
$\frac{d}{d x}[f(x) \pm g(x)]=$
$\frac{d}{d x}[f(x) g(x)]=$ (product rule)
$\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=$ (quotient rule)
$\frac{d}{d x}[f(g(x))]=$ (chain rule)

1) Implicit differentiation:
ex: Find $\frac{d y}{d x}$ for $x y^{3}+3 x^{2}=4-y^{5}$
2) Logarithmic differentiation:
ex: Find $\frac{d y}{d x}$ for $y=x^{\left(5 x^{3}+2 x\right)}$

Integral properties/procedures...
$\int c f(x) d x=$
$\int[f(x) \pm g(x)] d x=$
$\int_{b}^{a} f(x) d x=$

1) $u$-substitution (integral version of chain rule)
ex: $\int x \cos \left(x^{2}\right) d x$
2) by parts (integral version of product rule)
ex: $\int x \ln (x) d x$
3) trigonometric integrals
ex: $\int \sin ^{3} x \cos ^{3} x d x$
4) trigonometric substitution
ex: $\int \frac{1}{x^{3} \sqrt{x^{2}-1}} d x$
5) partial fraction expansion
ex: $\int \frac{1}{x^{2}-5 x+6} d x$
6) complete the square to arctan form
ex: $\int \frac{1}{x^{2}-4 x+13} d x$

Improper Integrals:
$\int_{1}^{\infty} \frac{1}{x^{2}} d x=$
$\int_{1}^{\infty} \frac{1}{x} d x=$

## Theorems...

What is the Intermediate Value Theorem?

What is the Mean Value Theorem?

What is the Squeeze Theorem?

Different representational forms of relationships...
Rectanqular: $y=f(x) \quad$ Parametric: $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$
Convert to rectangular form and sketch:
$\left\{\begin{array}{l}x=2 t \\ y=4 t+3\end{array}\right.$
$\left\{\begin{array}{l}x=1+2 \cos t \\ y=-2+3 \sin t\end{array}\right.$

Polar:


Formulas for converting polar - rectangular: $x=$
$y=$
$x^{2}+y^{2}=$
$\tan \theta=$

Convert to rectangular form and sketch:
$r=8 \sin \theta$
$\theta=\frac{5 \pi}{6}$

Vectors:

Position:

$\vec{a}=\left\langle a_{x}, a_{y}\right\rangle$, a distance of $|\vec{a}|$ in direction $\theta$

Formulas for vector $\left(\vec{a}=\left\langle a_{x}, a_{y}\right\rangle\right)$ :
magnitude of $a=|\vec{a}|=$
components :

$$
\begin{aligned}
& a_{x}= \\
& a_{y}=
\end{aligned}
$$

Vectors are equal if...
Find the vector from $(1,3)$ to $(9,4)$

Multiplication by a constant...

$$
3\langle 6,-3\rangle=
$$

$$
\lim _{x \rightarrow 2} 3 f(x)=
$$

$$
\frac{d}{d x}[3 f(x)]=
$$

$$
\int 3 f(x) d x=
$$

$$
\sum_{n=1}^{\infty} 3 a_{n}=
$$

In general, multiplication of objects other than numbers is not straightforward (derivative of function multiplied requires product rule, integral requires integration by parts, multiplication of a vector by another vector not defined for this class, cannot multiply two series in summation form.)

Addition/subtraction...
$\langle 8,1\rangle-\langle 2,5\rangle=$
$\lim _{x \rightarrow c}\left(x^{3}-\frac{1}{x}\right)=$
$\frac{d}{d x}\left[x^{3}-\sin (x)\right]=$
$\int\left(x^{3}-\cos (x)\right) d x=$
$\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)=$

PEMDAS still applies...
$2\langle 8,1\rangle-3\langle 2,5\rangle=$

For vectors things like limits, derivatives, or integrals apply separately to each term:
$\lim _{t \rightarrow 4}\left(\left\langle t^{2}, t^{3}\right\rangle\right)=$
$\frac{d}{d x}\left[\left\langle t^{2}, t^{3}\right\rangle\right]=$
$\int\left\langle t^{2}, t^{3}\right\rangle d t=$

For limits:
$\lim _{x \rightarrow c}[f(x)]^{n}=$
$\lim _{x \rightarrow c}[\sqrt[n]{f(x)}]=$

Derivatives in parametric form $\left\{\begin{array}{l}x=t^{2}-3 t \\ y=\sin (t)\end{array}\right.$ :
$\frac{d y}{d x}=$
$\frac{d^{2} y}{d x^{2}}=$

Derivatives in polar form $r=4 \sin (\theta)$ :
$\frac{d y}{d x}=$
$\frac{d y}{d x}$ is the slope of the tangent line on the $x-y$ plane.

Horizontal tangents occur when...

Vertical tangents occur when...

Intersections are always system solutions
(find the intersections):
$\left\{\begin{array}{l}y=x^{2}-6 \\ y=-x\end{array}\right.$
$\left\{\begin{array}{l}r=3(1+\sin \theta) \\ r=3(1-\sin \theta)\end{array}\right.$
$\left\{\begin{array}{l}x_{1}=3 \sin t \\ y_{1}=2 \cos t\end{array} \quad\left\{\begin{array}{l}x_{2}=3+\cos t \\ y_{2}=1+\sin t\end{array} \quad 0 \leq t<2 \pi\right.\right.$

Applications of derivatives...
What do each of these tell us about $f$ ?
$f(x)$ is
$f^{\prime}(x)$ is
$f^{\prime \prime}(x)$ is

Critical points occur when...

Inflection points occur when...

Relative (local) max occurs when...

Relative (local) min occurs when...

Using a graph of the curve $f$


Graph of $f$
Where is $f$ increasing? decreasing?

Where is $f$ concave up? concave down?

Where is $f$ continuous?
Where is $f$ differentiable?
Where are the following for $f$ ?

- critical points
- relative maxima
-relative minima
- inflection points

What are the absolute max/min over $[-2,1]$ ?

$\int_{-4}^{3} f(x) d x=$
$\int_{3}^{-4} f(x) d x=$

Using a graph of the derivative $f^{\prime}$


Where is $f$ increasing? decreasing?

Where is $f$ concave up? concave down?

Where are the following for $f$ ?

- critical points
- relative maxima
-relative minima
- inflection points

If $f(2)=1$, then $f(-5)=$

Using a graph of the concavity $f^{\prime \prime}$


Where is $f$ concave up? concave down?

Where inflection points for $f$ ?

## Tangent lines...

Rectangular:
For $(x-2)^{2}+(y+3)^{2}=4$
(a) Write the equation of the tangent line at $(1,-3+\sqrt{3})$
(b) Where does this curve have horizontal tangents?
(c) Where does this curve have vertical tangents?

Parametric:
For $\left\{\begin{array}{l}x=2 t-\pi \sin t \\ y=2-\pi \cos t\end{array}\right.$
(a) Write the equation of the tangent line at $t=\frac{2 \pi}{3}$
(b) Where does this curve have horizontal tangents?
(c) Where does this curve have vertical tangents?

Polar:
For $r=4 \sin \theta$
(a) Write the equation of the tangent line at $\theta=\frac{\pi}{3}$
(b) Where does this curve have horizontal tangents?
(c) Where does this curve have vertical tangents?

## Position, Velocity (speed), Acceleration...

In 1D:

An object moves in one direction with position $x$ given by $x(t)=t^{3}-4 t^{2}+3$.
(a) Find velocity as function of time.
(b) What acceleration as a function of time.
(c) What is the position of the particle at $t=2$ ?
(d) What is the speed of the particle at $t=2$ ?

An object is launched upward with an initial velocity of $30 \mathrm{~m} / \mathrm{s}$ from an initial height of 10 m in gravity field with $a(t)=-9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Find velocity as a function of time.
(b) Find height as a function of time.
(c) At what time does the object reach maximum height and what is the max height?
(d) At what time does the object hit the ground?

## In 2D (vector/parametric):

An object moves in the xy-plane with:
a velocity vector $\vec{v}(t)=\left\langle t^{3}-5 t^{2}, \cos t\right\rangle$
...or could be given as parametric equations:
$\left\{\begin{array}{l}x(t)=t^{3}-5 t^{2} \\ y(t)=\cos t\end{array}\right.$
(a) Find the position vector if $\vec{x}(0)=\langle 3,0\rangle$.
(b) Find the acceleration vector.
(c) What is the position, velocity, and acceleration
of the object at $t=2$ ?
(d) What is the speed of the object at $t=2$ ?

## Related Rates Problems...

A 5-foot long ladder is leaning against a building. If the foot of the ladder is sliding away from the building at a rate of $2 \mathrm{ft} / \mathrm{sec}$, how fast is the top of the ladder moving and in what direction when the foot of the ladder is 4 feet from the building?

## Optimization Problems...

A cylindrical can (with circular base) is made with a material for the lateral side which costs $\$ 3 / \mathrm{cm}^{2}$, and a material for the top and bottom circular sides which costs $\$ 5 / \mathrm{cm}^{2}$. If the can must enclose a volume of $20 \pi \mathrm{~cm}^{3}$ what should the radius and height be to minimize the material cost?

## Applications of integrals...

Use Fundamental Theorem of Calculus PT1 to evaluate the definite integral:
$\int_{1}^{2} x^{2} d x=$

Using the Fundamental Theorem of Calculus PT2 (net change theorem): The rate of change of the altitude of a hot-air balloon is given by $r(t)=t^{3}-4 t^{2}+6 \quad(0 \leq t \leq 8)$. Find the change in altitude of the balloon during the time when the altitude is decreasing.

Using the Fundamental Theorem of Calculus PT2 to find a y -value from another given derivative:
If $f^{\prime}(x)=x^{2}-5 x$, and $f(1)=2$ find $f(4)$.

Integral as inverse operation of derivative:
:
$\frac{d}{d x}\left(\int_{2}^{3 x^{2}}\left(t^{3}-4 t\right) d t\right)=$
$\frac{d}{d x}\left(\int_{x^{5}}^{3 x^{2}}\left(t^{3}-4 t\right) d t\right)=$

Average value of a function:
If $f(x)=x^{2}-5 x$ find the average value of $f(x)$ over $[2,6]$

Use a left-endpoint Riemann Sum with two subintervals
of equal length to approximate $\int_{2}^{2.4} x^{2} d x$
Does this estimate under- or over-estimate the value?

Use a right-endpoint Riemann Sum with two subintervals
of equal length to approximate $\int_{2}^{2.4} x^{2} d x$
Does this estimate under- or over-estimate the value?

Use the trapezoidal rule with two subintervals
of equal length to approximate $\int_{2}^{2.4} x^{2} d x$

## Area between curves (rectangular):

Find the area enclosed by $f(x)=x^{2}$ and $g(x)=\sqrt{x}$.

Area between curves (polar):
Find the area inside $r=3 \sin \theta$ and outside $r=1+\sin \theta$.

Volumes:
Find the volume formed by rotating the area enclosed
by $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ around y -axis (disc method).

Find the volume formed by rotating the area enclosed by $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ around y -axis (shell method).

Find the volume formed by rotating the area enclosed by $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ around the line $y=1$.

The region R enclosed by $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ forms
the base of a solid. For this solid, each cross section
Perpendicular to the $x$-axis is a rectangle whose
Height is 4 times the length of its base in region $R$.
Find the volume of this solid.

Arclength (rectangular):

If $f(x)=\frac{x^{3}}{6}+\frac{1}{2 x}$ find the length of this
curve for $\frac{1}{2} \leq x \leq 1$.

Arclength (parametric):
Find the arclength of the curve $x=6 t^{2}, y=2 t^{3}$
over the interval $1 \leq t \leq 4$.

Arclength (polar):
Find the arclength of one petal of $r=2 \sin (3 \theta)$.

Surface area of surface of revolution:

Find the area of the surface obtained by rotating The curve $y=x^{3}, 0 \leq x \leq 2$ about the $x$-axis.

Displacement vs. total distance:
The velocity of a particle is given by $\vec{v}(t)=\left\langle 3 t^{2}-8 t, 3 t^{2}-12\right\rangle$. Find:
(a) The displacement of the particle from $t=1$ to $t=4$.
(b) The total distance traveled by the particle from $t=1$ to $t=4$.

## Differential Equations...

Slope fields:

Sketch a slope field for $\frac{d y}{d x}=\frac{1}{2} x y$

Which of the following could be a specific solution to the Differential equation with the given slope field:
(A) $y=e^{-x}$


Solving separable differential equations:
Find the particular solution for $\frac{d y}{d x}=3 x^{2} y, \quad y(2)=1$.

Euler's method:
$f(x)$ is the solution to the differential equation $\frac{d y}{d x}=x^{2} y, \quad y(1)=2$. Use Euler's method with a step size of 0.1 to approximate $f(1.3)$.
(h can be negative)

Differential Equation Models:
Write the differential equation and solution equations:
Unrestricted population growth:

Radioactive Decay:

Logistic Model Growth:

Unrestricted population growth example:
A rabbit population with an initial size of 500 grows at A rate proportional to its size. If there are1200 rabbits At $t=10$ days, when was the rabbit population 900?

Logistic growth example:
The number of moose in a national park is modeled by the function $M(t)$ that satisfies the logistical
differential equation $\frac{d M}{d t}=\frac{3}{5} M-\frac{3}{1000} M^{2}$ and $M(0)=50$.
(a) What is $\lim _{t \rightarrow \infty} M(t)$ ?
(b) What is the population of moose when the number of moose is growing most rapidly?
(c) At what time does max rate of growth occur?

Taylor Polynomials and Infinite Series...

## Series convergence tests:

For each, state procedure (and conditions for use) result for convergence, result for divergence...
nth-term test

Geometric series
p-series

## Alternating series test

Alternating Series are absolutely convergent if...

Alternating Series are conditionally convergent if...

Integral test

Root test

Ratio test

Direct Comparison

Limit Comparison

Taylor Polynomials/Power Series...

Taylor Polynomial form:

Maclaurin means centered at...

Max Error (Lagrange Error)...

Memorized Power Series:
$e^{x}=$
$\sin x=$
$\cos x=$

Find the radius of convergence of
$\sum_{n=1}^{\infty} \frac{n+1}{2 n+1} \frac{(x-3)^{n}}{2^{n}}$

The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$.

Find a power series expansion for $\frac{x^{2}}{1-x^{2}}$

The function $f$ is defined by the power series
$f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots$
Show that $1-\frac{1}{3!}$ approximates $f(1)$ with an error less than $\frac{1}{100}$

The Maclaurin series for the function $f$ is given by
$f(x)=\sum_{n=0}^{\infty}\left(-\frac{x}{4}\right)^{n}$. What is the value of $f(3) ?$

## Other things to know...

Notation forms for first derivatives:
$y^{\prime}, \quad f^{\prime}(x), \quad \frac{d y}{d x}, \quad \frac{d}{d x}[y], \quad D_{x}(y)$

Notation forms for higher-order derivatives:
$y^{\prime \prime}, \quad f^{\prime \prime}(x), \quad \frac{d^{2} y}{d x^{2}}$
$y^{\prime \prime \prime}, \quad f^{\prime \prime \prime}(x), \quad \frac{d^{3} y}{d x^{3}}$
$y^{(4)}, \quad f^{(4)}(x), \quad \frac{d^{(4)} y}{d x^{(4)}}$
$y^{(n)}, \quad f^{(n)}(x), \frac{d^{(n)} y}{d x^{(4 n)}}$

Geometry Formulas:
Circles: area, $A=$ circumference, $C=$

Triangles : $A=\quad(b \perp h)$

Right-circular cylinders...
Surface Area $=$ top $/$ bottom + lateral $\quad$ Volume, $V=$
Surface Area =

