
AP Calculus BC – Study Guide 
 
Trigonometry… 
 

         
 
Important Trig Identities: 
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Curve shapes (sketch)… 
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Geometry Formulas:                                Geometry Formulas: 
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Limits and Continuity… 
 

What must be true for  lim
x c

f x


 to exist?     

                                                                                                                         
   lim lim

x c x c
f x L f x

where L is a finite number

  
 

 

 
 

What must be true for  f x to be continuous at c?                 
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2) lim lim

3)

x c x c

f c must exist

f x L f x

limit must exist

f c L

  
 



 

 
Evaluation tactics…(evaluate these limits): 

22

3
lim

7x

x

x




       Plug in: 

 
 

222

2 33 1 1
lim

7 3 32 7x

x

x

 
  

 
 

 
 

2

5

25
lim

5x

x

x




       Factor and cancel: 
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What is L’Hopital’s Rule?                     
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Evaluate using L’Hopital’s rule: 
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                                                                                   function raised to a function? Ln of both sides…  
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Special memorized limits: 
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Horizontal asymptotes occur when…    Horizontal asymptotes occur when… 

 lim
x

f x any constant


  

Vertical asymptotes occur when…     Vertical asymptotes occur when… 

 lim
x c

f x


   

(whenever the function’s y value is approaching 
infinity as x approaches a number – usually at 
uncancelled zeros in the denominator of rational 
functions) 



Important Theorems… 

What is the Intermediate Value Theorem?  Intermediate Value Theorem   
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What is the Mean Value Theorem?       Mean Value Theorem                            
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                                                               (Special case when slope = 0 is called ‘Rolle’s Theorem’) 
 
 
What is the Squeeze Theorem?       Squeeze Theorem                            
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then f x exists and is equal to L

 



 

 



Derivatives… 
 

Average rate of change of  f x      Average rate of change of  
   f b f a

f x
b a





 

(from x = a to x = b) 
 
 

Instantaneous rate of change of  f x  at x is…           Instantaneous rate of change of  f x  at x  f x  

 

 

Limit definition of derivative,  f x      
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Notation forms for first derivatives:    Notation forms for first derivatives: 

                                 , , , , x

dy d
y f x y D y

dx dx
   

 
Notation forms for higher-order derivatives:   Notation forms for higher-order derivatives:  
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Derivative shortcuts… 
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Antiderivative shortcuts… 

0 dx          0 dx C  

 

c dx          c dx cx C   
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Derivative properties/procedures… 

 
d

cx
dx
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   (constants can be moved out) 
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                                                                                                                                (derivative of each term separately) 
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d

f x g x f x g x g x f x
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                                                                                                                 (1st times deriv. of 2nd plus 2nd times deriv. of 1st) 
 

 
 

f xd
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f x g x f x f x g xd
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                                                                                                                  (low-dhigh minus high-dlow over low squared) 
 

  d
f g x

dx
      (chain rule)                                      

d
f g x f g x g x

dx
         

                                                                                                  (deriv. of outside (with same inside) times deriv. of inside) 
 
1) Implicit differentiation:     1) Implicit differentiation: 

ex:  Find 3 2 53 4
dy

for xy x y
dx
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2) Logarithmic differentiation:     2) Logarithmic differentiation: 

ex:  Find 
 35 2x xdy

for y x
dx
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Integral properties/procedures… 

 c f x dx                                    c f x dx c f x dx    (constants can be moved out) 

 

   f x g x dx                                         f x g x dx f x dx g x dx                  

                                                                                                        (can split into separate integrals for each term) 
 

 
a

b

f x dx                                       
a b

b a

f x dx f x dx     

 
1) u-substitution (integral version of chain rule)   1) u-substitution (integral version of chain rule) 
  

ex:    2cosx x dx                   

                                                                                                                   
 

 
 
 
 
 
 
2) by parts (integral version of product rule)    2) by parts (integral version of product rule) 
 

ex:    lnx x dx              

       
                                                                                                                        
 

 
 
 
 
 
 
 
 
 
3) trigonometric integrals     3) trigonometric integrals 

ex:   
3 3sin cosx x dx              
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4) trigonometric substitution    4) trigonometric substitution 

ex:   
3 2

1

1
dx

x x 
     

                    
                                                                                                                    
 

 

 

5) partial fraction expansion    5) partial fraction expansion 

ex:   
2

1
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6) complete the square to arctan form   6) complete the square to arctan form 

ex:   
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Improper Integrals: 
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                                                                                                           (integral may converge to a number, or diverge) 
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dx A x B x
x x

Ax A Bx B

A B x A B x

A B
system A B

A B

dx dx
x x

x
x x C C

x

 
     

   
 

   

     

 
  

  


 


     







 

 

 

2

2

2

2

2 2

1 1

1
4 4 13 4

4 13

2 9

1
: 2, 1,
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Applications of derivatives… 
 
What do each of these tell us about f ?   What do each of these tell us about f ? 

 f x  is         f x is the y value at x  

 

 f x  is          ' 'f x is the instantaneous rate of change slope at x  

 

 

0

0

f x f is increasing

f x f is decreasing

 

 
 

 

 f x  is          ' 'f x is the concavity curvature at x  

 

 

0

0

f x f is concave up

f x f is concave down

 

 
 

 
 

Critical points occur when…    Critical points occur when   0f x or DNE   

                and the sign of  f x  changes. 

 

Inflection points occur when…    Inflection points occur when   0f x or DNE   

                and the sign of  f x  changes. 

 
 

Relative (local) max occurs when…   Relative (local) max occurs when   0f x or DNE   

                and the sign of  f x  goes from + to -  

 
 

Relative (local) min occurs when…   Relative (local) min occurs when   0f x or DNE   

                and the sign of  f x  goes from - to +  

 
  



Using a graph of the curve f      Using a graph of the curve f  

      

Where is f  increasing?  decreasing?                      
   
     

0,2

2,0 2,4

f is increasing over f going up

decreasing over f going down 
 

 

Where is f  concave up?  concave down?           
   

   

0,2 2,3

2,0 3,4

f is concave up over

concave down over 




 

 

Where is f  continuous?                2,2 2,4f is continuous over    

 

Where is f  differentiable?                  2,0 0,2 2,4f is differentiable over     

 
Where are the following for f ?     Where are the following for f ?   

  
- critical points                                 critical points at (-2,2), (0,0.5), (2.5,1) 
- relative maxima        no relative maxima 
-relative minima      relative minima at (0,0.5) 
- inflection points       inflection points at (0,0.5), (3,1) 
 
What are the absolute max/min over [-2,1]?   What are the absolute max/min over [-2,1]?  
                       Absolute min at (0,0.5), absolute max at (-2,2)   
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f x dx


         
3
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4 2 1 5
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f x dx areas
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f x dx


           
4 3

3 4

5
2

f x dx f x dx




       

 
 
 
  



Using a graph of the derivative f      Using a graph of the derivative f   

         

Where is f  increasing?  decreasing?           
     
   

5, 2 2,5 0

2,2 0

f is increasing over f

decreasing over f

  

 


 

 

Where is f  concave up?  concave down?           
   
   

0,5

5,0

f is concave up over f going up

concave down over f going down




 

 
Where are the following for f ?     Where are the following for f ?   

  
- critical points                                 critical points at x=-2, x=2  [f’ = 0] 
- relative maxima        relative maxima at x = 2  [f’ from – to +] 
-relative minima      relative minima at x = -2  [f’ from + to -] 
- inflection points              inflection point at x =0 [f’ graph changing direction] 
 
 

   2 1, 5If f then f     

        
 

 

 

 

 

 

 

 

  

 

     

:

evaluate definite integral by plugging limits into antiderivative

b

a

We can use the Net ChangeTheorem

part of the Fundamental Theorem of Calculus

f x dx F b F a

This also means an integral of a derivative of something is equal

to the accum

 

 

     

     

     

2

5

2

Pick one limit to be what you have and the other what you need :

2 5 and evaluate integral using areas

1
3 2 1 5 , 5 1 3 2 2 2

2

b

a

ulation net change in the value this is a derivative of :

f x dx f b f a

f x dx f f

f f  



  

   

         







Using a graph of the concavity f      Using a graph of the concavity f    

     

Where is f  concave up?  concave down?           
     
     

1,2 4,6 0

2, 1 2,4 0

f is concave up over f

concave down over f

 

  




 

 
Where inflection points for f ?      Where inflection points for f ?     

         at x =-1, x=2, x=4  [f’’ = 0 and sign is changing] 
 
 
 
Tangent lines… 
 
Rectangular: 

   

   
 

 

2 2
2 3 4

1, 3 3

?

?

For x y

a Write the equation of the tangent line at

b Where does this curve have horizontal tangents

c Where does this curve have vertical tangents

   

   

 

 

 

 

 

 
 
  

   

   

 

    
 

 

    

 

2 2
2 3 4

tan 1, 3 3

:

1 22 1
2 2 1 2 3 0,

3 33 3 3

1
3 3 1

3

?

For x y

a Write the equation of the gent line at

dy
m use implicit differentiation if needed

dx

dy dy x
x y

dx dx y

y x

b Where does this curve have horizontal tangents

w

   

 



   
       

    

    

   

 

   

0 0 , 2 0, 2 2

?

0 , 3 0, 3 2

dy
here numerator x at x points

dx

c Where does this curve have vertical tangents

dy
where DNE denominator y at y points

dx

     

     



Position, Velocity (speed), Acceleration… 

In 1D:           In 1D: 

An object moves in one direction with position x  

given by   3 24 3x t t t   . 

(a) Find velocity as function of time. 
(b) What acceleration as a function of time. 
(c) What is the position of the particle at t = 2? 
(d) What is the speed of the particle at t = 2? 
 
 
 
 
 
 
 
 
 
An object is launched upward with an initial velocity of 

30 /m s  from an initial height of 10 m in gravity field  

with   29.8 /a t m s  . 

(a) Find velocity as a function of time. 
(b) Find height as a function of time. 
(c) At what time does the object reach maximum height  
      and what is the max height? 
(d) At what time does the object hit the ground? 
 
 
 
 
 
 
 
 
 
  

 

     

     

         

       

3 2

2

3 2

2

4 3

3 8

6 8

2 2 4 2 3 5

2 3 2 8 2 4 4

x t t t

a v t x t t t

b a t v t t

c x include units if given in problem

d speed v

  

  

  

    

     

 

       

   

 

       

     

 

 

 

1

1 1

2
2

2

2 2

2

9.8

9.8 9.8

0 30, 30 9.8 0 , 30

9.8 30

9.8 30 4.9 30

0 10, 10 4.9 0 30 0 , 10

4.9 30 10

0: 9.8 30 0, 3.06122 sec

3.06122

a t

a v t a t dt dt t C

v so C C

v t t

b x t v t dt t dt t t C

x so C C

x t t t

c Max height when v t t

x

 

     

    

  

       

     

   

    



 

 

 

    
 

2

2

55.91837

0: 4.9 30 10 0

30 30 4 4.9 10
0.3169

2 4.9

m

d On ground when x t t

at t

    

   
  


, 6.439 sec



Related Rates Problems… 
 
A 5-foot long ladder is leaning against a building. 
If the foot of the ladder is sliding away from the  
building at a rate of 2 ft/sec, how fast is the top 
of the ladder moving and in what direction when 
the foot of the ladder is 4 feet from the building? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Optimization Problems… 
A cylindrical can (with circular base) is made with 
a material for the lateral side which costs $3/cm

2
,  

and a material for the top and bottom circular sides 
which costs $5/cm

2
.  If the can must enclose a volume 

of 
320 cm what should the radius and height be to  

minimize the material cost? 

2 2 2

:

5

Draw a picture and assign variables to things which vary

then find equations which relate the variables

x y 

 

2

Anything changing is a derivative with respect to time

if value is increasing

dx

dt



 

 
2 2 2

, ' ' :

4 5 , 3

At this snapshot in time variables have snaphot values

y y  

 

    

 

2 2

2 2

, , :

25

25

2 2 0

2 4 2 2 4 0

16
2 / sec

8

/

Differentiate implicitlyWRT time plug in values and solve

x y

d d d
x y

dt dt dt

dx dy
x y
dt dt

dy

dt

dy
ft

dt

negative b c top of ladder is

moving so y is decreasing downward

 

       

 

 

   

 

   

        

3
/3 3

2 2

2

$3 $5
, 20

2 3 2 5 20

6 10

lateral top bottom

Need functions for the objective function

what is being optimized and any constraints.

Objective Function Constraint

Cost C A A V cm
cm cm

C rh r r h

C rh r cost in ter



   

 

   
     

   

  

 

 

 

2 1 2

2 2 2

2

,

20 20 20
6 10 120 10

min 0

120 20 0

120
20

ms of r and h

Now solve constraint for one variables substitute into objective function :

h so C r r r r
r r r

Now find by taking derivative and finding where C r

C r r r

r


   



 







 
      

 

 

    

  

 

 

1
3 3 3

2

22

3 , min.

120
, 6, 6 6 1.81712

20

20 20
6.057

1.81712

2 min max :

240 20 , so this is a

r r cm
r

Use constraint equation to find other dimension :

h cm
r

Should use nd derivative to verify this is a not a

C r r is for r so concave up



 

    

  



    



Applications of integrals… 
 
Use Fundamental Theorem of Calculus PT1 to   Use Fundamental Theorem of Calculus PT1 to  
evaluate the definite integral:    evaluate the definite integral: 
2

2

1

x dx           
22

3 32 3

11

1 1 1 8 1 7
2 1

3 3 3 3 3 3
x dx x

     
              

  

 
 
Using the Fundamental Theorem of Calculus PT2  
(net change theorem): The rate of change of the 
altitude of a hot-air balloon is given by  

   3 24 6 0 8r t t t t     .  Find the change in 

altitude of the balloon during the time when the 
altitude is decreasing. 
 
 
 
 
Using the Fundamental Theorem of Calculus PT2  
to find a y-value from another given derivative: 

If    2 5 , 1 2f x x x and f     find  4 .f  

 
 
 
 
 
 
 
 
Integral as inverse operation of derivative:   Integral as inverse operation of derivative:  

 
23

3

2

4
x

d
t t dt

dx

 
  

 
 
       

 
 
 

 

 
2

5

3
3 4

x

x

d
t t dt

dx

 
  

 
 
                   

 
 
 
Average value of a function:     Average value of a function: 

If   2 5f x x x   find the average value of    

   2,6f x over  

 
 
 
 
 

 

 

       

 

3.514 3.514
3 2

1.572 1.572

1.572 3.514

, :

4 6 3.514 1.572

4.431 9

First graph r t in calculator and find

that this rate is negative for t

Then since r t is the derivative of altitude

a t dt t t dt a a

is the change in altitude Math
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2

1

43 2

1

3 2 3 2

5
3 4 1

2

5 4 2

4 5 4 1 5 1 4 2

12 4 2, 4 10

b

a

f x dx f b f a

x x dx f f

x x f

f

f f

  

 
   

 

    

    

    





   

 

 

   

66
2 3 2

22

1

1 1 1 5 8
5

6 2 4 3 2 3

: ' '

6 2
:

6 2

b

a

average value of f x f x dx
b a

x x dx x x

NOTE This is different than average rate of change of f x

f f
which would instead be




 
      









 
 

      

        
23

33 2 2

2

4 3 4 3 6

b x

a

x

d
f t dt f b x b x chain rule

dx

d
t t dt x x x

dx

 
 

 
 

 
   

 
 









 
 

 

         

               
2

5

3
3 33 2 2 5 5 44 3 4 3 6 4 5

b x

a x

x

x

d
f t dt f b x b x f a x a x

dx

d
t t dt x x x x x x

dx

 
    

 
 

 
     

 
 





 

 


