## AP Calculus BC - Study Guide

## Trigonometry...



Important Trig Identities:
$\sin x=$
$\cos x=$
$\tan x=$
$\cot x=$
$\sec x=$
$\csc x=$
$\sin ^{2} x+\cos ^{2} x=$
(the other two forms)

$$
\begin{aligned}
& \sin ^{2}(x)= \\
& \cos ^{2}(x)=
\end{aligned}
$$

$\sin (2 x)=$
$\cos (2 x)=$
$\sin x=\frac{1}{\csc x}$
$\cos x=\frac{1}{\sec x}$
$\tan x=\frac{1}{\cot x}=\frac{\sin x}{\cos x}$
$\cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x}$
$\sec x=\frac{1}{\cos x}$
$\csc x=\frac{1}{\sin x}$
$\sin ^{2} x+\cos ^{2} x=1$
$1+\tan ^{2} x=\sec ^{2} x$
$1+\cot ^{2} x=\csc ^{2} x$
$\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$
$\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$

$f(x)=\ln (x)$
$f(x)=\sqrt{x}$
$f(x)=\frac{1}{x}$
$f(x)=\sin (x)$
$f(x)=\cos (x)$
$f(x)=|x|$


## Geometry Formulas:

Circles:
area, $A=$
circumference, $C=$

Triangles:
$A=\quad(b \perp h)$

Right-circular cylinders..
Surface Area $=$ top $/$ bottom + lateral
Surface Area $=$
Volume, $V=$

## Geometry Formulas:

Circles:
area, $A=\pi r^{2}$
circumference, $C=2 \pi r$

Triangles :
$A=\frac{1}{2} b h \quad(b \perp h)$

Right-circular cylinders...
Surface Area $=$ top $/$ bottom + lateral
Surface Area $=2\left(\pi r^{2}\right)+2 \pi r h$
Volume, $V=\pi r^{2} h$

## Limits and Continuity...

What must be true for $\lim _{x \rightarrow c} f(x)$ to exist?

What must be true for $f(x)$ to be continuous at $c$ ?

$$
\lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)
$$

where $L$ is a finite number

1) $f(c)$ must exist
2) $\lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)$
limit must exist
3) $f(c)=L$

Evaluation tactics...(evaluate these limits):
$\lim _{x \rightarrow 2} \frac{x-3}{x^{2}-7}$
Plug in:

$$
\lim _{x \rightarrow 2} \frac{x-3}{x^{2}-7}=\frac{(2)-3}{(2)^{2}-7}=\frac{-1}{-3}=\frac{1}{3}
$$

## Factor and cancel:

$$
\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}\left(\frac{0}{0}\right)=\lim _{x \rightarrow 5} \frac{(x-5)(x+5)}{x-5}=\lim _{x \rightarrow 5}(x+5)=10
$$

Rationalize:

$$
\begin{aligned}
& \lim _{x \rightarrow 9} \frac{x^{2}-81}{\sqrt{x}-3}=\lim _{x \rightarrow 9} \frac{\left(x^{2}-81\right)(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)} \\
& =\lim _{x \rightarrow 9} \frac{(x-9)(x+9)(\sqrt{x}+3)}{x-9}=\lim _{x \rightarrow 9}(x+9)(\sqrt{x}+3)=(18)(6)
\end{aligned}
$$

What is L'Hopital's Rule?

$$
\begin{aligned}
& \text { If } \lim _{x \rightarrow c} \frac{f(x)}{g(x)} \text { is indeterminant form } \frac{0}{0} \text { or } \frac{ \pm \infty}{ \pm \infty} \\
& \text { then } \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

Evaluate using L'Hopital's rule:
$\lim _{x \rightarrow \infty} \frac{2 x^{2}-x}{x^{2}+x}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{2 x^{2}-x}{x^{2}+x}\left(\frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow \infty} \frac{4 x-1}{2 x+1}=\lim _{x \rightarrow \infty} \frac{4}{2}=2 \\
& \lim _{x \rightarrow \infty} e^{-x} \sqrt{x}(0 \bullet \infty) \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{e^{x}}\left(\frac{\infty}{\infty}\right)=\lim _{x \rightarrow \infty} \frac{\frac{1}{2} x^{-\frac{1}{2}}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{x} e^{x}}=\frac{1}{\infty}=0
\end{aligned}
$$

$\lim _{x \rightarrow 0}\left(1+\frac{x}{2}\right)^{\cot x}$
function raised to a function? Ln of both sides...

$$
\begin{aligned}
& y=\lim _{x \rightarrow 0}\left(1+\frac{x}{2}\right)^{\cot x} \\
& \ln (y)=\ln \left(\lim _{x \rightarrow 0}\left(1+\frac{x}{2}\right)^{\cot x}\right)=\lim _{x \rightarrow 0}\left[\ln \left(\left(1+\frac{x}{2}\right)^{\cot x}\right)\right] \\
& \ln (y)=\lim _{x \rightarrow 0}\left[\cot (x) \ln \left(\left(1+\frac{x}{2}\right)\right)\right]\left(\frac{\cos 0}{\sin 0} \ln 1=\infty \bullet 0\right) \\
& \ln (y)=\lim _{x \rightarrow 0}\left[\frac{\ln \left(\left(1+\frac{x}{2}\right)\right)}{\tan (x)}\right]\left(\frac{0}{0}\right) l^{\prime} \text { Hopital's rule } \ldots \\
& \left.\ln (y)=\lim _{x \rightarrow 0}\left[\frac{1}{1+\frac{x}{2}}\left(\frac{1}{2}\right)\right]=\frac{\left(\frac{1}{2}\right)}{\sec ^{2}(x)}\right]=\frac{1}{\left(\frac{1}{(\cos 0)^{2}}\right)} \\
& y=e^{\frac{1}{2}}=\sqrt{e}
\end{aligned}
$$

Special memorized limits:
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=$
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=$
Horizontal asymptotes occur when...

Vertical asymptotes occur when...

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
\end{aligned}
$$

Horizontal asymptotes occur when...
$\lim _{x \rightarrow \pm \infty} f(x)=$ any constant
Vertical asymptotes occur when...

$$
\lim _{x \rightarrow c} f(x)= \pm \infty
$$

(whenever the function's $y$ value is approaching infinity as x approaches a number - usually at uncancelled zeros in the denominator of rational functions)

## Important Theorems...

What is the Intermediate Value Theorem?

What is the Mean Value Theorem?

What is the Squeeze Theorem?

Intermediate Value Theorem
If $f$ is continuous on $[a, b], f(a) \neq f(b)$, and $k$ is any numberbetween $f(a)$ and $f(b)$,
then there is at least one number $c$ in $[a, b]$
such that $f(c)=k$.


Note: This theorem doesn't provide a method for finding the value(s) $c$, and doesn't indicate the number of $c$ values which map to $k$, it only guarantees the existence of at least one number $c$ such that $f(c)=k$.

## Mean Value Theorem

Let $f$ be continuous on $[a, b]$, and differentiable on $(a, b)$, then there exists a number c in $(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.


In other words, you can find a mean (average) rate of change across and interval, and there is some input value where the instantaneous rate of change equals the mean rate of change.
(Special case when slope $=0$ is called 'Rolle's Theorem')

## Squeeze Theorem

If $h(x) \leq f(x) \leq g(x)$ for all $x$ in an open interval containing $c$, except possibly at $c$ itself, and if $\lim _{x \rightarrow c} h(x)=L=\lim _{x \rightarrow c} g(x)$ then $\lim _{x \rightarrow c} f(x)$ exists and is equal to $L$.


Average rate of change of $f(x)=$ (from $x=a$ to $x=b$ )

Average rate of change of $f(x)=\frac{f(b)-f(a)}{b-a}$

Instantaneous rate of change of $f(x)$ at $\mathrm{x} f^{\prime}(x)$

Limit definition of derivative, $f^{\prime}(x)=$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$-o r-$

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x+a)-f(a)}{x-a}
$$

Notation forms for first derivatives:
Notation forms for first derivatives:

$$
y^{\prime}, \quad f^{\prime}(x), \quad \frac{d y}{d x}, \quad \frac{d}{d x}[y], \quad D_{x}(y)
$$

Notation forms for higher-order derivatives:
Notation forms for higher-order derivatives:

$$
\begin{array}{ll}
y^{\prime \prime}, & f^{\prime \prime}(x), \\
y^{\prime \prime \prime}, & \frac{d^{2} y}{d x^{2}} \\
y^{(4)}(x), & \frac{d^{3} y}{d x^{3}} \\
\ldots & f^{(4)}(x), \\
\cdots & \frac{d^{(4)} y}{d x^{(4)}} \\
y^{(n)}, & f^{(n)}(x),
\end{array} \frac{d^{(n)} y}{d x^{(4 n)}}
$$

Derivative shortcuts...
$\frac{d}{d x}[c]=$
$\frac{d}{d x}\left[x^{n}\right]=$
$\frac{d}{d x}\left[e^{x}\right]=$
$\frac{d}{d x}\left[a^{x}\right]=$
$\frac{d}{d x}[\ln (x)]=$
$\frac{d}{d x}\left[\log _{b}(x)\right]=$
$\frac{d}{d x}[\sin (x)]=$
$\frac{d}{d x}[\cos (x)]=$
$\frac{d}{d x}[\tan (x)]=$
$\frac{d}{d x}[\tan (x)]=$
$\frac{d}{d x}[\sec (x)]=$
$\frac{d}{d x}[\csc (x)]=$
$\frac{d}{d x}[\cot (x)]=$
$\frac{d}{d x}\left[\sin ^{-1}(x)\right]=$
$\frac{d}{d x}\left[\tan ^{-1}(x)\right]=$
$\frac{d}{d x}\left[\sec ^{-1}(x)\right]=$

$$
\begin{aligned}
& \frac{d}{d x}[c]=0 \\
& \frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \\
& \frac{d}{d x}\left[e^{x}\right]=e^{x} \\
& \frac{d}{d x}\left[a^{x}\right]=a^{x} \ln (a) \\
& \frac{d}{d x}[\ln (x)]=\frac{1}{x} \\
& \frac{d}{d x}\left[\log _{b}(x)\right]=\frac{1}{x \ln (b)} \\
& \frac{d}{d x}[\sin (x)]=\cos (x) \\
& \frac{d}{d x}[\cos (x)]=-\sin (x) \\
& \frac{d}{d x}[\tan (x)]=\sec ^{2}(x) \\
& \frac{d}{d x}[\tan (x)]=\sec ^{2}(x) \\
& \frac{d}{d x}[\sec (x)]=\sec (x) \tan (x) \\
& \frac{d}{d x}[\csc (x)]=-\csc (x) \cot (x) \\
& \frac{d}{d x}[\cot (x)]=-\csc ^{2}(x) \\
& \frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}}\left(\frac{d}{d x}\left[\cos ^{-1}(x)\right]=\frac{-1}{\sqrt{1-x^{2}}}\right) \\
& \frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}}\left(\frac{d}{d x}\left[\cot ^{-1}(x)\right]=\frac{-1}{1+x^{2}}\right) \\
& \frac{d}{d x}\left[\sec ^{-1}(x)\right]=\frac{1}{|x| \sqrt{x^{2}-1}}\left(\frac{d}{d x}\left[\csc ^{-1}(x)\right]=\frac{-1}{|x| \sqrt{x^{2}-1}}\right)
\end{aligned}
$$

## Antiderivative shortcuts...

$\int 0 d x=$

$$
\int c d x=
$$

$$
\int x^{n} d x=
$$

$$
\int e^{x} d x=
$$

$$
\int e^{a x} d x=
$$

$$
\int a^{x} d x=
$$

$$
\int \frac{1}{x} d x=
$$

$$
\int \sin (x) d x=
$$

$$
\int \cos (x) d x=
$$

$$
\int \sec ^{2}(x) d x=
$$

$$
\int \csc ^{2}(x) d x=
$$

$$
\int \tan (x) d x=
$$

$$
\int \cot (x) d x=
$$

$$
\int \sec (x) \tan (x) d x=
$$

$$
\int \csc (x) \cot (x) d x=
$$

$$
\int \sec (x) d x=
$$

$$
\int \csc (x) d x=
$$

$$
\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=
$$

$$
\int \frac{1}{a^{2}+u^{2}} d u=
$$

$$
\int \frac{1}{|u| \sqrt{u^{2}-a^{2}}} d u=
$$

$$
\begin{aligned}
& \int 0 d x=C \\
& \int c d x=c x+C \\
& \int x^{n} d x= \\
& \int e^{x} d x=e^{x}+C \\
& \int e^{a x} d x=\frac{e^{a x}}{a}+C \\
& \int a^{x} d x=\frac{a^{x}}{\ln (a)}+C \\
& \int \frac{1}{x} d x=\ln |x|+C \\
& \int \sin (x) d x=-\cos (x)+C \\
& \int \cos (x) d x=\sin (x)+C \\
& \int \sec ^{2}(x) d x=\tan (x)+C \\
& \int \csc ^{2}(x) d x=-\cot (x)+C \\
& \int \tan (x) d x=\ln |\sec (x)|+C=-\ln |\cos (x)|+C \\
& \int \cot (x) d x=-\ln |\csc (x)|+C=\ln |\sin (x)|+C \\
& \int \sec (x) \tan (x) d x=\sec (x)+C \\
& \int \csc (x) \cot (x) d x=-\csc (x)+C \\
& \int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C \\
& \int \csc (x) d x=\ln |\csc (x)-\cot (x)|+C \\
& \int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\sin ^{-1}\left(\frac{u}{a}\right)+C \\
& \int \frac{1}{a^{2}+u^{2}} d u=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C \\
& \int \frac{1}{|u| \sqrt{u^{2}-a^{2}}} d u=\frac{1}{a} \sec ^{-1}\left(\frac{u}{a}\right)+C
\end{aligned}
$$

$\frac{d}{d x}[c x]=$
$\frac{d}{d x}[f(x) \pm g(x)]=$
$\frac{d}{d x}[f(x) g(x)]=$ (product rule)
$\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=$ (quotient rule)
$\frac{d}{d x}[f(g(x))]=$ (chain rule)

1) Implicit differentiation:
ex: Find $\frac{d y}{d x}$ for $x y^{3}+3 x^{2}=4-y^{5}$

## 2) Logarithmic differentiation:

ex: Find $\frac{d y}{d x}$ for $y=x^{\left(5 x^{3}+2 x\right)}$
$\frac{d}{d x}[c x]=c \frac{d}{d x}[x]$ (constants can be moved out)

$$
\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]
$$

(derivative of each term separately)
$\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$
( $1^{\text {st }}$ times deriv. of $2^{\text {nd }}$ plus $2^{\text {nd }}$ times deriv. of 1 st)

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

(low-dhigh minus high-dlow over low squared)

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

(deriv. of outside (with same inside) times deriv. of inside)

## 1) Implicit differentiation:

$$
\begin{aligned}
& x \frac{d}{d x}\left[y^{3}\right]+y^{3} \frac{d}{d x}[x]+\frac{d}{d x}\left[3 x^{2}\right]=\frac{d}{d x}[4]-\frac{d}{d x}\left[y^{5}\right] \\
& x\left(3 y^{2} \frac{d y}{d x}\right)+y^{3}(1)+6 x=0-5 y^{4} \frac{d y}{d x} \\
& \frac{d y}{d x}\left(3 x y^{2}+5 y^{4}\right)=-6 x-y^{3} \\
& \frac{d y}{d x}=\frac{-6 x-y^{3}}{3 x y^{2}+5 y^{4}}
\end{aligned}
$$

## 2) Logarithmic differentiation:

$$
\begin{aligned}
& \ln (y)=\ln \left(x^{5 x^{3}+2 x}\right) \\
& \ln (y)=\left(5 x^{3}+2 x\right) \ln (x) \\
& \frac{d}{d x}[\ln (y)]=\frac{d}{d x}\left[\left(5 x^{3}+2 x\right) \ln (x)\right] \\
& \frac{d}{d x}[\ln (y)]=\left(5 x^{3}+2 x\right) \frac{d}{d x}[\ln (x)]+\ln (x) \frac{d}{d x}\left[\left(5 x^{3}+2 x\right)\right] \\
& \frac{1}{y} \frac{d y}{d x}=\left(5 x^{3}+2 x\right) \frac{1}{x}+\ln (x)\left(15 x^{2}+2\right) \\
& \frac{d y}{d x}=\left[\left(5 x^{3}+2 x\right) \frac{1}{x}+\ln (x)\left(15 x^{2}+2\right)\right] y \\
& \frac{d y}{d x}=\left[\left(5 x^{3}+2 x\right) \frac{1}{x}+\ln (x)\left(15 x^{2}+2\right)\right] x^{\left(5 x^{3}+2 x\right)}
\end{aligned}
$$

## Integral properties/procedures...

$\int c f(x) d x=$
$\int c f(x) d x=c \int f(x) d x$ (constants can be moved out)
$\int[f(x) \pm g(x)] d x=$
$\int[f(x) \pm g(x)] d x=\int[f(x)] d x \pm \int[g(x)] d x$
$\int_{b}^{a} f(x) d x=$

1) $\underline{u}$-substitution (integral version of chain rule)
ex: $\int x \cos \left(x^{2}\right) d x$
(can split into separate integrals for each term)

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

1) $\underline{u}$-substitution (integral version of chain rule)

$$
\begin{aligned}
\int x \cos \left(x^{2}\right) d x \quad u & =x^{2} \\
\frac{d u}{d x} & =2 x, \quad d u=2 x d x, \quad x d x=\frac{1}{2} d u
\end{aligned}
$$

substitute into original integral :

$$
\int \cos (u) \frac{1}{2} d u=\frac{1}{2} \int \cos (u) d u=\frac{1}{2} \sin (u)=\frac{1}{2} \sin \left(x^{2}\right)+C
$$

2) by parts (integral version of product rule)
ex: $\int x \ln (x) d x$
3) by parts (integral version of product rule)

$$
\begin{array}{rlrl}
\int x \ln (x) d x & u & =\ln (x) & d v=x d x \\
\frac{d u}{d x} & =\frac{1}{x} & \int d v=\int x d x \\
d u & =\frac{1}{x} d x & v=\frac{1}{2} x^{2}
\end{array}
$$

substitute into pattern:

$$
\begin{aligned}
u v-\int v d u & =(\ln (x))\left(\frac{1}{2} x^{2}\right)-\int \frac{1}{2} x^{2} \frac{1}{x} d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \int x d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{4} x^{2}+C
\end{aligned}
$$

3) trigonometric integrals
ex: $\int \sin ^{3} x \cos ^{3} x d x$

## 3) trigonometric integrals

$\int \sin ^{3} x \cos ^{3} d x$ (split off something to form $d u$ )
$\int \sin ^{3} x \cos ^{2} x \cos x d x$
$\int \sin ^{3} x\left(1-\sin ^{2} x\right) \cos x d x$
$\int\left(\sin ^{3} x-\sin ^{5} x\right) \cos x d x$
$\int \sin ^{3} x \cos x d x-\int \sin ^{5} x \cos x d x$
$u=\sin x, \frac{d u}{d x}=\cos x, \quad \cos x d x=d u$
$\int u^{3} d u-\int u^{5} d u$
$\frac{1}{4} u^{4}-\frac{1}{6} u^{6}+C=\frac{1}{4} \sin ^{4} x-\frac{1}{6} \sin ^{6} x+C$
4) trigonometric substitution
ex: $\int \frac{1}{x^{3} \sqrt{x^{2}-1}} d x$
4) trigonometric substitution

$$
\begin{array}{rr}
\sqrt{x^{2}-1} \cos \theta=\frac{1}{x} & \tan \theta=\frac{\sqrt{x^{2}-1}}{1} \\
x=\frac{1}{\cos \theta}=\sec \theta & \sqrt{x^{2}-1}=\tan \theta \\
\frac{d x}{d \theta}=\sec \theta \tan \theta & d x=\sec \theta \tan \theta d \theta
\end{array}
$$

5) partial fraction expansion
ex: $\int \frac{1}{x^{2}-5 x+6} d x$
6) complete the square to arctan form
ex: $\int \frac{1}{x^{2}-4 x+13} d x$
7) partial fraction expansion

$$
\left.\left.\begin{array}{ll}
\int \frac{1}{x^{2}-5 x+6} d x & \frac{1}{(x-3)(x-2)}=\frac{A}{x-3}+\frac{B}{x-2} \\
\int \frac{1}{(x-3)(x-2)} d x & A(x-2)+B(x-3)=1 \\
& A x-2 A+B x-3 B=1 \\
& (A+B) x+(-2 A-3 B)=(0) x+(1)
\end{array}\right\} \begin{array}{l}
\text { system: }\left\{\begin{array}{c}
A+B=0 \\
-2 A-3 B=1
\end{array} \quad A=1, B=-1\right.
\end{array}\right\} \begin{aligned}
& 1 \int \frac{1}{x-3} d x-1 \int \frac{1}{x-2} d x \\
& \ln |x-3|-\ln |x-2|+C=\ln \left|\frac{x-3}{x-2}\right|+C
\end{aligned}
$$

6) complete the square to arctan form

$$
\int \frac{1}{x^{2}-4 x+13} d x \quad x^{2}-4 x+\underline{\underline{4}}+13-\underline{=}
$$

$$
(x-2)^{2}+9
$$

$$
\int \frac{1}{(x-2)^{2}+9} d x \text { now } u-s u b: u=x-2, \frac{d u}{d x}=1, d u=d x
$$

$$
\int \frac{1}{u^{2}+3^{2}} d x
$$

$$
\frac{1}{3} \tan ^{-1}\left(\frac{u}{3}\right)+C=\frac{1}{3} \tan ^{-1}\left(\frac{x-2}{3}\right)+C
$$

Improper Integrals:

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{2}} d x= \\
& \int_{1}^{\infty} \frac{1}{x} d x=
\end{aligned}
$$

$$
\begin{gathered}
\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{2}} d x=\lim _{b \rightarrow \infty}\left[-\frac{1}{b}-\left(-\frac{1}{1}\right)\right]=-\frac{1}{\infty}+1=0+1=1 \\
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\lim _{b \rightarrow \infty}[\ln |b|-(\ln |1|)]=\infty-0=\infty \\
\text { (integral may converge to a number, or diverge) }
\end{gathered}
$$

$f^{\prime}(x)$ is
$f^{\prime \prime}(x)$ is

Critical points occur when...

Inflection points occur when...

Relative (local) max occurs when..

Relative (local) min occurs when...

What do each of these tell us about $f$ ?
$f(x)$ is the $y$-value at $x$
$f^{\prime}(x)$ is the instantaneous rate of change('slope') at $x$

$$
\begin{aligned}
& f^{\prime}(x)>0 \quad f \text { is increasing } \\
& f^{\prime}(x)<0 f \text { is decreasing }
\end{aligned}
$$

$f^{\prime \prime}(x)$ is the concavity ('curvature') at $x$

$$
\begin{aligned}
& f^{\prime \prime}(x)>0 \quad f \text { is concave up } \\
& f^{\prime \prime}(x)<0 f \text { is concave down }
\end{aligned}
$$

Critical points occur when $f^{\prime}(x)=0$ or $D N E$ and the sign of $f^{\prime}(x)$ changes.

Inflection points occur when $f^{\prime \prime}(x)=0$ or $D N E$ and the sign of $f^{\prime \prime}(x)$ changes.

Relative (local) max occurs when $f^{\prime}(x)=0$ or DNE and the sign of $f^{\prime}(x)$ goes from + to -

Relative (local) min occurs when $f^{\prime}(x)=0$ or DNE and the sign of $f^{\prime}(x)$ goes from - to + \/

Using a graph of the curve $f$


Graph of $f$
Where is $f$ increasing? decreasing?

Where is $f$ concave up? concave down?

Where is $f$ continuous?

Where is $f$ differentiable?

Where are the following for $f$ ?

- critical points
- relative maxima
-relative minima
- inflection points

What are the absolute max/min over $[-2,1]$ ?


Graph of $f$

$$
\begin{aligned}
& \int_{-4}^{3} f(x) d x= \\
& \int_{3}^{-4} f(x) d x=
\end{aligned}
$$

Using a graph of the curve $f$


Graph of $f$
$f$ is increasing over $(0,2)$ [ $f$ going up]

$$
\text { decreasing over }(-2,0) \cup(2,4)[f \text { going down }]
$$

$f$ is concave up over $(0,2) \bigcup(2,3)$

$$
\text { concave down over }(-2,0) \cup(3,4)
$$

$f$ is continuous over $(-2,2) \cup(2,4)$
$f$ is differentiable over $(-2,0) \cup(0,2) \cup(2,4)$

Where are the following for $f$ ?
critical points at $(-2,2),(0,0.5),(2.5,1)$
no relative maxima
relative minima at $(0,0.5)$
inflection points at $(0,0.5),(3,1)$

What are the absolute max/min over $[-2,1]$ ?
Absolute min at $(0,0.5)$, absolute max at $(-2,2)$


Graph of $f$

$$
\begin{aligned}
& \int_{-4}^{3} f(x) d x=\text { areas }=4+2-\frac{\pi}{2}-1=5-\frac{\pi}{2} \\
& \int_{3}^{-4} f(x) d x=-\int_{-4}^{3} f(x) d x=-5+\frac{\pi}{2}
\end{aligned}
$$

Using a graph of the derivative $f^{\prime}$


Graph of $f^{\prime}$
Where is $f$ increasing? decreasing?

Where is $f$ concave up? concave down?

Where are the following for $f$ ?

- critical points
- relative maxima
-relative minima
- inflection points
$\underline{\text { Using a graph of the derivative }} f^{\prime}$


Graph of $f^{\prime}$
$f$ is increasing over $(-5,-2) \cup(2,5)\left[f^{\prime}>0\right]$ decreasing over $(-2,2) \quad\left[f^{\prime}<0\right]$

$$
\begin{aligned}
f \text { is concave up over }(0,5) & {\left[f^{\prime} \text { going up }\right] } \\
\text { concave down over }(-5,0) & {\left[f^{\prime} \text { going down }\right] }
\end{aligned}
$$

Where are the following for $f$ ?
critical points at $x=-2, x=2\left[f^{\prime}=0\right]$
relative maxima at $x=2$ [ $f^{\prime}$ from - to + ]
relative minima at $x=-2\left[f^{\prime}\right.$ from + to -]
inflection point at $x=0\left[f^{\prime}\right.$ graph changing direction $]$

We can use the Net Change Theorem
( part of the Fundamental Theorem of Calculus):
$\int_{a}^{b} f(x) d x=F(b)-F(a)$
evaluate definite integral by plugging limits into antiderivative This also means an integral of a derivative of something is equal to the accumulation (net change) in the value this is a derivative of :
$\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$
Pick one limit to be what you have and the other what you need:
$\int_{-5}^{2} f^{\prime}(x) d x=f(2)-f(-5)$ and evaluate integral using areas
$3-\frac{1}{2} \pi(2)^{2}=1-f(-5), \quad f(-5)=1-3+2 \pi=2 \pi-2$

## Using a graph of the concavity $f^{\prime \prime}$



Where is $f$ concave up? concave down?

Where inflection points for $f$ ?

## Tangent lines...

## Rectangular:

$\operatorname{For}(x-2)^{2}+(y+3)^{2}=4$
(a) Write the equation of the tangent line at $(1,-3+\sqrt{3})$
(b) Where does this curve have horizontal tangents?
(c) Where does this curve have vertical tangents?

## Using a graph of the concavity $f^{\prime \prime}$


$f$ is concave up over $(-1,2) \cup(4,6) \quad\left[f^{\prime \prime}>0\right]$ concave down over $(-2,-1) \cup(2,4)\left[f^{\prime \prime}<0\right]$

Where inflection points for $f$ ?
at $x=-1, x=2, x=4$ [ $f^{\prime \prime}=0$ and sign is changing]
$\operatorname{For}(x-2)^{2}+(y+3)^{2}=4$
(a) Write the equation of the $\tan$ gent line at $(1,-3+\sqrt{3})$
$m=\frac{d y}{d x}[$ use implicit differentiation if needed $]:$
$2(x-2)(1)+2(y+3)\left(\frac{d y}{d x}\right)=0, \quad \frac{d y}{d x}=\frac{-x+2}{y+3}=\frac{-(1)+2}{(-3+\sqrt{3})+3}=\frac{1}{\sqrt{3}}$
$(y-(-3+\sqrt{3}))=\frac{1}{\sqrt{3}}(x-1)$
(b) Where does this curve have horizontal tangents?
where $\frac{d y}{d x}=0($ numerator $=0),-x+2=0$, at $x=2(2$ points $)$
(c) Where does this curve have vertical tangents?
where $\frac{d y}{d x}=D N E($ denominator $=0), y+3=0$, at $y=-3(2$ points $)$

In 1D:

An object moves in one direction with position $x$ given by $x(t)=t^{3}-4 t^{2}+3$.
(a) Find velocity as function of time.
(b) What acceleration as a function of time.
(c) What is the position of the particle at $t=2$ ?
(d) What is the speed of the particle at $t=2$ ?

In 1D:
$x(t)=t^{3}-4 t^{2}+3$
(a) $v(t)=x^{\prime}(t)=3 t^{2}-8 t$
(b) $a(t)=v^{\prime}(t)=6 t-8$
(c) $x(2)=(2)^{3}-4(2)^{2}+3=-5 \quad$ (include units if given in problem)
(d) speed $=|v(2)|=\left|3(2)^{2}-8(2)\right|=|-4|=4$

An object is launched upward with an initial velocity of $30 \mathrm{~m} / \mathrm{s}$ from an initial height of 10 m in gravity field with $a(t)=-9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Find velocity as a function of time.
(b) Find height as a function of time.
(c) At what time does the object reach maximum height and what is the max height?
(d) At what time does the object hit the ground?
$a(t)=-9.8$
(a) $v(t)=\int a(t) d t=\int(-9.8) d t=-9.8 t+C_{1}$ $v(0)=30$, so $30=-9.8(0)+C_{1}, C_{1}=30$

$$
v(t)=-9.8 t+30
$$

(b) $x(t)=\int v(t) d t=\int(-9.8 t+30) d t=-4.9 t^{2}+30 t+C_{2}$

$$
\begin{aligned}
& x(0)=10, \text { so } 10=-4.9(0)^{2}+30(0)+C_{2}, C_{2}=10 \\
& x(t)=-4.9 t^{2}+30 t+10
\end{aligned}
$$

(c) Max height when $v=0:-9.8 t+30=0, t=3.06122 \mathrm{sec}$ $x(3.06122)=55.91837 \mathrm{~m}$
(d) On ground when $x=0:-4.9 t^{2}+30 t+10=0$
at $t=\frac{-30 \pm \sqrt{(30)^{2}-4(-4.9)(10)}}{2(-4.9)}=-0.5469,6.439 \mathrm{sec}$

## Related Rates Problems...

A 5-foot long ladder is leaning against a building. If the foot of the ladder is sliding away from the building at a rate of $2 \mathrm{ft} / \mathrm{sec}$, how fast is the top of the ladder moving and in what direction when the foot of the ladder is 4 feet from the building?

## Optimization Problems...

A cylindrical can (with circular base) is made with a material for the lateral side which costs $\$ 3 / \mathrm{cm}^{2}$, and a material for the top and bottom circular sides which costs $\$ 5 / \mathrm{cm}^{2}$. If the can must enclose a volume of $20 \pi \mathrm{~cm}^{3}$ what should the radius and height be to minimize the material cost?

Draw a picture and assign variables to things which vary then find equations which relate the variables :
$x^{2}+y^{2}=5^{2}$
Anything changing is a derivative with respect to time (+if value is increasing)
$\frac{d x}{d t}=+2$
At this snapshot in time, variables have 'snaphot' values:
$(4)^{2}+y^{2}=5^{2}, \quad y=3$
Differentiate implicitly WRT time, plug in values, and solve:
$x^{2}+y^{2}=25$
$\frac{d}{d t}\left[x^{2}\right]+\frac{d}{d t}\left[y^{2}\right]=\frac{d}{d t}[25]$
$2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$
$2(4)(2)+2(4) \frac{d y}{d t}=0$
$\frac{d y}{d t}=-\frac{16}{8}=-2 f t / \mathrm{sec}$
negative b/c top of ladder is
moving so $y$ is decreasing (downward)

Need functions for the objective function
( what is being optimized) and any constraints.

Objective Function
Cost, $C=\left(A_{\text {lateral }}\right)\left(\frac{\$ 3}{\mathrm{~cm}^{3}}\right)+\left(A_{\text {top/botoom }}\right)\left(\frac{\$ 5}{\mathrm{~cm}^{3}}\right) \quad V=20 \pi \mathrm{~cm}^{3}$
$C=(2 \pi r h)(3)+(2)\left(\pi r^{2}\right)(5) \quad \pi r^{2} h=20 \pi$
$C=6 \pi r h+10 \pi r^{2} \quad$ cost in terms of $r$ and $h$
Now solve constraint for one variables, substitute into objective function:
$h=\frac{20 \pi}{\pi r^{2}}=\frac{20}{r^{2}} \quad$ so $\quad C=6 \pi r\left(\frac{20}{r^{2}}\right)+10 \pi r^{2}=120 \pi r^{-1}+10 \pi r^{2}$
Now find min by taking derivative and finding where $C^{\prime}(r)=0$
$C^{\prime}(r)=-120 \pi r^{-2}+20 \pi r=0$

$$
20 \pi r=\frac{120 \pi}{r^{2}}, \quad r^{3}=\frac{120}{20}=6, \quad r=\sqrt[3]{6}=(6)^{\frac{1}{3}}=1.81712 \mathrm{~cm}
$$

Use constraint equation to find other dimension :
$h=\frac{20}{r^{2}}=\frac{20}{(1.81712)^{2}}=6.057 \mathrm{~cm}$
Should use 2nd - derivative to verify this is a min not a max :
$C^{\prime \prime}(r)=240 \pi r^{-3}+20 \pi$ is + for $+r$, so concave up, so this is a min .

Use Fundamental Theorem of Calculus PT1 to evaluate the definite integral: $\int_{1}^{2} x^{2} d x=$

Using the Fundamental Theorem of Calculus PT2 (net change theorem): The rate of change of the altitude of a hot-air balloon is given by $r(t)=t^{3}-4 t^{2}+6 \quad(0 \leq t \leq 8)$. Find the change in altitude of the balloon during the time when the altitude is decreasing.

Using the Fundamental Theorem of Calculus PT2 to find a $y$-value from another given derivative: If $f^{\prime}(x)=x^{2}-5 x$, and $f(1)=2$ find $f(4)$.

Integral as inverse operation of derivative:
$\frac{d}{d x}\left(\int_{2}^{3 x^{2}}\left(t^{3}-4 t\right) d t\right)=$
$\frac{d}{d x}\left(\int_{x^{5}}^{3 x^{2}}\left(t^{3}-4 t\right) d t\right)=$

Average value of a function:
If $f(x)=x^{2}-5 x$ find the average value of $f(x)$ over $[2,6]$

Use Fundamental Theorem of Calculus PT1 to evaluate the definite integral:
$\int_{1}^{2} x^{2} d x=\left[\frac{1}{3} x^{3}\right]_{1}^{2}=\left(\frac{1}{3}(2)^{3}\right)-\left(\frac{1}{3}(1)^{3}\right)=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$

First graph $r(t)$ in calculator and find
that this rate is negative for $1.572<t<3.514$
Then, since $r(t)$ is the derivative of altitude:
$\int_{1.572}^{3.514} a^{\prime}(t) d t=\int_{1.572}^{3.514}\left(t^{3}-4 t^{2}+6\right) d t=a(3.514)-a(1.572)$
is the change in altitude $=-4.431($ Math 9$)$

$$
\begin{aligned}
& \int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) \\
& \int_{1}^{4}\left(3 x^{2}-\frac{5}{2} x\right) d x=f(4)-f(1) \\
& {\left[x^{3}-5 x^{2}\right]_{1}^{4}=f(4)-2} \\
& \left((4)^{3}-5(4)^{2}\right)-\left((1)^{3}-5(1)^{2}\right)=f(4)-2 \\
& -12=f(4)-2, \quad f(4)=-10
\end{aligned}
$$

Integral as inverse operation of derivative:
$\frac{d}{d x}\left(\int_{a}^{b(x)} f(t) d t\right)=f(b(x)) \cdot b^{\prime}(x)[$ chain rule $]$
$\frac{d}{d x}\left(\int_{2}^{3 x^{2}}\left(t^{3}-4 t\right) d t\right)=\left(\left(3 x^{2}\right)^{3}-4\left(3 x^{2}\right)\right) \cdot(6 x)$
$\frac{d}{d x}\left(\int_{a(x)}^{b(x)} f(t) d t\right)=f(b(x)) \cdot b^{\prime}(x)-f(a(x)) \cdot a^{\prime}(x)$
$\frac{d}{d x}\left(\int_{x^{5}}^{3 x^{2}}\left(t^{3}-4 t\right) d t\right)=\left(\left(3 x^{2}\right)^{3}-4\left(3 x^{2}\right)\right) \cdot(6 x)-\left(\left(x^{5}\right)^{3}-4\left(x^{5}\right)\right) \cdot\left(5 x^{4}\right)$

Average value of a function:
average value of $f(x)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
$\frac{1}{6-2} \int_{2}^{6}\left(x^{2}-5 x\right) d x-\frac{1}{4}\left[\frac{1}{3} x^{3}-\frac{5}{2} x^{2}\right]_{2}^{6}=\frac{8}{3}$
NOTE: This is different than 'average rate of change of $f(x)^{\prime}$
which would instead be: $\frac{f(6)-f(2)}{6-2}$

