AP Calc BC, Lesson Notes, Unit 8: Parametric Equations, Polar Coordinates, Vectors
Unit 8-1: Conic Sections

A conic section is a 2D curve which is the intersection of a plane with a cone...
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Circle Parabola Ellipse Hyperbola

...and all have equations of the general form:

Ax* + Bxy+Cy* + Dx+ Ey+F =0
If the xy term is present, the conic section is not aligned with the x-y axes (is rotated)

We will not consider this case (it is solved with a rotational coordinate transformation)
- email me if you want a link to more detailed info about this case.

Quickly recognizing which conic section from the equation

x> —6x—-8y—T7=0 One squared term = parabola

9x” +4y" -36x+8y+4=0 Two squared terms, same sign = ellipse

9x2 — 4y —18x—16y+29=0 Two squared terms, different signs = hyperbola

4x—y* —2y—-9=0 One squared term = parabola

16x* —4y* +32x+16y-64=0 Two squared terms, different signs = hyperbola

2x* +2y +12x-16y+40=0 Two squared terms, same sign = ellipse, but coefficients of

squared terms are same too, so circle



Parabolas

i

latus rectum 2

directrix: x= -1
2

8

® focus (14172 °2)
ex: {1, 2)

(x-2)'=4(r-1)

* directrix: =0

(»—2) =2(x-1)

Standard form:

(x=h)" =4p(y—k)
(y—k) =4p(x—h)

p =distance from vertex to focus 25 {like y=x)

and from vertex to directrix

Geometrically, all paints on a parabola are
equidistant from focus and directrix...

directrix

Parabola examples

#1. x’—6x—-8y—-7=0

...Which makes this shape perfect for focusing energy (antenna

dishes, flashlights, etc.)

all elements of a wavefront arrive at the
same time at the focus

(x— h)z =4p(y—k) D =distance from vertex to focus
(y=k) =4p(x—h) and from vertex to directrix

#2. 4x—1y"—2y-9=0



major axis
Ellipses vertex: (1, 1)

focus: (1,-2++/5 —
]( } focus: [1 - \i_?/
¢ ; 1
\/ center: (1, -2) —

5 focus: {I + 5, - 2.:|

— - SRR T i—— major axis
vertex, (-2, -2 }\ vertex: (4, -2)
focus : (I.—E— \.-"."\J -

vertex: {1,-5)

| 2 2
2 2 -1 +2
(-1 (+2) | L N ) N
bigger denominator = longer direction 4 9 2 4
Standard form: ; : . \ .
[x—h} \ (y—k) ; {x—h) (y—k) | eccen."mcn"yzezz
2_ 2 2 - = = + =
c=a —b b a a b* e=1is acircle,
¢ =distance from center to foci vertical major axis horizontal major axis

higher e == movre oval

Geometrically, the sum of the distances from a point
on an ellipse to each foclus is constant:

In astronomical orbits, the object follows an elliptical path around the
object being orbited which is at a focus (although the ellipse is usually

close to circular):
.moun

Circles are special cases of ellipses where a = b:

Circles

(.r h) (y- k)

ﬂ'_

¢ - +(y-fc)2=)«’ .
N\

Standard form: (x—#)" +(y—k)" =+

(x=1) +(»+2)" =9

Ellipse/Circle examples (x—hY’

; (y-k)’ Ly Ry (k) i
az bz bz 2 o

a
horizontal major axis

c=a-b

c
) | eccentricity =e=—
¢ =distance from center to foci

vertical major axis

#3. 9x° +4y" -36x+8y+4=0 #H4 2x* +2y" +12x-16y+40=0




Hyperbolas

transverse axis

. -
-, H

SN H
asymptotM

. o
fiocus: (-2A%1 3

‘\}/ vertex (-1,-2) 3 ,,.-'-1" ¢
TANSVErSe axis «sssssala. | e center: (-2, 1)
3 ok =t ..‘-Q. !
Focus : {I 13, 1} il H ";-[_ [
(x=1)'_(r+2) -1 _(x+2)
opens in direction of positive term 4 9 1 4 9
Standard form: (x=h) _(r=k) _ -1 _(x+2) _,
a b 4 9

ct=a’+8

¢ = distance firom center to foci
asymplotes :

horizontal transverse axis

vertical (ransverse axis

{y—k}::t%{x—k} asymplotes (y—k):i%(x—h}

Geometrically, the difference of the distances from a
point on a hyperbola to each focus is constant. ..

Hyperbola examples

___this is useful in location detection systems. [f two points receive a signal
and the delay between the times received is known, a hyperbola traces out
the locus of all possible points where the emitting object might be.

\ -/ If you have a 2nd set of two

ek detectors, the location is at the
\ intersection of the two hyperbolas
from the two pairs of detectors.

c=a’+b?

¢ = distance from center to foci

(-1 (x+2) _
4 9
vertical transverse axis

bz

asymptotes: (y—k)= té (x-#)
a
horizontal fransverse axis

#5. 16x° —4y* +32x+16y—64=0

#6. 9x’ -4y -18x-16y+29=0




Parabola

(x=hy =4p(y—Fk)

(v=kY =dp(x=h)

x* like y= x*

v* ‘other one’

p = dist. vertex to focus
and dist. vertex to directrix

Ellipse Hyperbola
(x=h) +{,1--J:-]’ . (x=h)" _(v=k) -
a’ by a B
(x=h)  (r=k)" _, (k) _(x=h) _,
s a a’ b

a is always bigger, a not always bigger,
a under term of major axis a always under first term
first term is transverse axis
C‘:=ﬂ=—f}: c':=t-l':+f-‘r=

a = dist. center to vertex
¢ = dist. center to focus

b = dist. center to point b = dist. to ‘other side of box'

On minor axis
asymptotes from center
through comers of box:

[;r-.i:]=1£{x—ﬁ)
e
i
=k =t —{x=1
{(y=£K) ﬁ{'t' i}]

(look at box to see which)

eccentricity e= =
i



Unit 8-2: Parametric Equations and Plane Curves

We know how to find a position equation from acceleration if we have motion in 1 dimension...
X

a(1)=-9.8
v(1)=[a() di = [(-9.8) dt =—9.8t +v,
x(i)zJ'v(t) 'ndt=‘|'(—9.8£+v‘,)dl’=—4.9t2 + Y+ X, 0

...but what if we wanted to model an object launched so that it follows a 2 dimensional path?

100
80
60
40

20

0 20 4 60 *
We can find a parabola which matches this... 10
Vertex: (40, 100) =
(x—40)" =4p(y—-100) i

Now make sure it goes through (0,0):

((0)-40)"=4p((0)~100)
(-40)" =4p(-100)

o 20 a0 6 e‘

fﬁojwp ...and we can use a calculator graph to verify:
WHEB-1/18K745K

(x—40)" =-16(y-100)

~16y +1600 = x* —80x +1600 ITHOLC

~16y=x"—80x

y=—%x2 +5x

...but we don’t have a good sense of where the object is at time t



Parametric Equations

wa

This motion is in 2D, x and y, and both of these are varying with time, £. )
We can instead represent this curve using separate equations for x and y,
each written as functions of . These are called parametric equations:

In this particular case, gravity is acting in the y-direction only. Once launched, the ki

object continues to move steadily in the x direction. This suggests that we can just
make the equation for x:

x=1

...and we can now substitute this expression for x into y to get the
parametric equation for y:

We now call this path the Plane Curve, C with parametric equations:

e et ate. 2 p—
y= T X" =5% e
1,42
y=——(1)"=5(¢
() =5(0) el s
16
x=t
We can now plug in any value of f and find the X,y location of the object at the time: 1
=——1 -5t
First, it is helpful to know what range of values t can take to describe the d 16
full object path. The object starts at (0,0) and ends at (80,0), where y = O:
S Y Y
=6t 0 Jo<1<80 t= 40
] 100
! [—Ef E 5] =0 a plane curve must always C
1 indicate direction as parameter 150 f=60
=0 Syl increases positively with arrows t9 i
(=80 i
Now we can make a table with various values for ¢ and find matching x,y N
(or just use a calculator's table features):
20
[] 0 40 -]

In the next section, we will use derivatives and integrals to find things like how fast an object's height is changing
at a particular time, or the length of the arc the object travels over a time range (we can do this now even though
the path is 2D because we have a single parameter variable to integrate over or differentiate with respect to).

Sketching plane curves from parametric equations - manually and using a calculator

This idea applies to any curve, not just physics curves.
Or if we are allowed to use calculators, we can use the

#1. Sketch the curve given by the parametric equations calculator's ‘parametric’ graphing mode:
x=t*-4
= lf
2
-2<t<3
We could make a table and try various [ values:
f x y )
2102 ;
A1 3] [
0 4 0 3 = r q'l y 3 3 T 5
1]-3 1/2
210 1 E
3 s | 32 '




Eliminating the Parameter (converting from parametric to rectangular equations)

Anaother way which is sometimes helpful for graphing parametric equations is to eliminate the parameter to
convert back to rectangular equations to see if it matches a graph shape you are familiar with.

#2. (x=1*-4 #3. {x:Zt #4. {x=l+2cosr
1 y=-2+3sin¢
= —f y=41+3
% 2
1 we knowsin®t +cos’ 1 =1
1=2y 1=5I x-1 . y+2
4 cost="—, sint=2—=
x=(2y] -4 I 2 3
— y=4(5x]+3 [J’;’*”J]{%l)zm]
2 1 =
(7-0)' =5 (x+4) e +2) -1
...is a parabola with vertex (-4,0) ..is a line: 9 4

opening to the right: ...is an ellipse with center (1,-2):

e

Range of Parameter, Limits of x and y

Graphing by eliminating the parameter may be quicker, but you don't have direction information or info about the
limits of the parameter without plugging in a few values:

L D ...Is an ellipse with center (1,-2):
{y=-2+3$inr ¥

v 3 2
we knowsin®{ +cos 1 =1

cost:xT_], simfzi2

(2] )

: : Range of Parameter: 0<st<2m
(+2) (-1 (to go around once)
9 4
Limits of x and y: -1<x<3
-5<y<l

(we really shouldn't call these 'domain’ and
'range' because this is not a function)



Parametrizations are not unique

If we are given a rectangular equation, coming up with a set of parametric equations using a parameter is called
parametrizing the curve. Parametrizations are not unique: there are often many ways to parametrize a given

curve, y=ln((2x+3)2)
The most common way to parametrize is But we could do this instead:
to just make the independent variable the {=2x+3

parameter: (=3

x=t g
{y:ln((2r+3)2) x_‘23
=In(rz)

If you change parametrization, the range of the parameter also changes to cover a specified
part of the curve. Here are graphs of the above parametrizations for —-10<7s<10

The Two Most Common Parametrizations

If you can solve an equation for one of If you have cos, sin, try squaring and
the variables, the most common way to using the Pythagorean identity:
parametrize is to use the independent
variable as the parameter: {x: 1+2casd
:ln((2x+3)2) y==2+43sind
we knowsin® @ +cos® @ =1
x=tf cosf?—f-—z:l, sind = y+2
2
(y+2) (x ¥ (you can use any letter or
=1
9 4_ symbol for the parameter)
Examples
) . : x=cosd
#5. Graph the plane curve and write the corresponding rectangular equation: <
y=2sin(20)



Examples
x=-243cosd

#6. Graph the plane curve and write the corresponding rectangular equation: )
y=-5+ 35111(9)

3
; , _ =il

#7. Graph the plane curve and write the corresponding rectangular equation: {x C?St
y=sin{

#8. Find two different sets of parametric equations for y = x’



Unit 8-3: Parametric Equations and Calculus

Derivative of a parametric function still means "slope"

Since we can ultimately express a curve given in parametric form on an x-y plane, the
derivative dy/dx still means slope of the tangent line to the curve at a point, but the way we
compute it is slightly different and relies on the Chain Rule:

dy dydx
dt dx dt
Solving for dy/dx... ...and you can repeat for higher derivatives...
d ., 22|
P _\a) asiongasﬁ¢0 d_J:=dr %
dx ( dx ] dt & (d"J
dt “
Graph the plane curve and find and interpret the meaning of f,ﬁ, @, d’y att=-4,t=1 for x=1+5t+4
di dt’ dx’ dx’ _
yv=4t
att =—4 att=1
(0,-16) (10,4)
ax —2%+5 E}‘,: i ﬁ = How fast the point is increasing in x per unit
di dt dr of time, t.
@ _ 4 dy _ 4 dy —4 How fast the point is increasing in y per unit
di di dr of time, £
)
& - \dt) - 4 dv_ 4 dy 4 How fast the point is increasing in y per unit of ¥,
dx [de 2t+5 de 3 & 7 the slope of the tangent line at this point.
dt (decreasing) (increasing)
d [dy] (20 +5)(0)-(4)(2)
d'y _ di|dx _ (ZHS}2 __ -8 i
d  di, 2+5 g
d‘[r +50+4] i+ (20+5)

Z 2 The concavity of the curve at this point.
a;;_{ ~0.296 %% — 0023 concavity p
[t X

(concave up) (concave down)

We could also write equations for the tangent lines at these points; 3
x=t+5t+4
at t =—4 ati =1 y=4t
(0,-16) (10,4)
4)
@ = \dr) & i & _ 4 dy _4 How fast the point is increasing in y per unit of x,
dx (dx] 245 dc 3 & 7 the slope of the tangent line at this point. &
dt

Tangent line equations

(J’+16)=—§(X—0) (J-‘—4):$(_\r—10]




Need to be careful, graphs may loop and cross themselves

Graph the curve {" =2t=7msint _3-,<3 and find the parameters values where the graph crosses the y-axis.
y=2—mcost

Then write equations of tangent lines to the curve at these points. e NI
=

Graph crosses the y-axis when x = 0, using calculator graph...

- ..this happens at 3 t values in the interval:

I:—-{;— =0 I=%
y=—1}1416
(0,2) (0,-1.1416) (0,2) :
()
& _yab) st dy & dy 7
dx [dx] 2—weost % 8 zﬂl A 2
di
o B e Y e i
r=2=56-0 o iae)=0x-0) IR 0
y:—%x+2 y=-1.1416 }.:7_;'”1
We may be asked to find horizontal or vertical tangents { P
Some problems ask to find horizontal or vertical y=2-mcost

tangents...this mean on the x-y graph, so horizontal tangents
occur when:

& _
=0

Vertical tangents would occur when this derivative is undefined

(typically, when the denominator goes to zero). For the

H . z t=—0.8807
derivative previously computed...
@ k] 4 3
asing
9. A y=-1{1416
dx 2-—rmcost

would be undefined when 2—zcos? =0, solved by graphing in calculator:

at t =~—0.8807, 1=0.8807




A real-world example...

#1. A baseball is hit by a bat its trajectory is given by:  |*~" . (“”) as long as = 0
77 2 dx dx dt
=801 {5-50) [ ]
2500 dt

What is the angle of elevation of the path of the ball at t = 0, t = 30, and t = 607

We can graph this path: The angle of elevation can be found using
a tangent line at a given time: & =tan"'(m)

d}"
t e @=tan'(m) (use degrees)
) = " - - &
"Slope" at time t: 0 3.08 72.013
" - 30 1.232 50.934°
&@:M:_ﬁ(,_su) 80 | -0616 | -31.633°
dr [n&) I 2500
dt
A baseball is hit by a bat its trajectory is given by: %54
17 2
=80 ———(1-50)
Y 25000 %)
What do the derivatives ﬁﬁ mean?
dt - dt
If we compute these att=0,t=30,andt=280...
=0 1=30 1=80
& _, & _, -1 & _, How fast the ball's height is
di di dt

changing per unit time.

How fast the ball is moving
downrange per unit time.



We can now derive an equation for length of an arc along a 2D path

We have an equation for finding arc length using a derivative if a curve is expressed with y as a function of x:

arc fength:j-,ﬂ +[f'(x) ’ dx

But if we use the expression for dy/dx for a parametrically expressed curve...

(ay a't) [
(dx’dz)
(dxdr)z +(@d‘)2 &

(%) (%a)

...then:

b
arc length = j 1+ dx

0 — T

£ N o

\(%z)z +(dyd1)ﬂ ]

Il
L ey 2

e

=Jj (%f)z"*(%:r)%dx
arc length = :[ \j A‘t + )

\__./
"\

AR cats
J

The difference between these is which variable we are 'integrating over".

4) dt

arcfengrhzi,fl +[f'(x] i dx

— T sy

With the original formula, we are
moving along the x-axis and integrating
little sections of x (dx), and the
integrand converts the small dx into a
piece of arc length.

arc length = j\] ‘%:

t (maybe time)

With the new formula, we are moving
along the parameter (which might be
something like time) a small amount dt
and the integrand converts the small dt
into a piece of arc length.

(day 2)



We can now derive an equation for length of an arc along a 2D path

This new expression has two advantages over the previous version of arc length:

arc length = i1 1+ [f'(x} ® dx arc length =.:i\/[%:)z +(%)2 at

1) We can use it to find arc length for
curves which are not functions.

2) In Calc 3 we can easily extend this
to find arc length of curves in 3D
space:

arc length = :[' J(%‘)z + (%)? + (%{ )2 dt

An arc length example...

#1. Find the arc length of the curve on the given interval.

x=6t%, y=2 1<t<4



Unit 8-4: Polar Coordinates and Graphs

Definition of Polar Coordinates

The coordinate system we've been using to graph points and equation curves is referred to as the
Cartesian or rectangular coordinate system. But there is another way to locate points on the
x-y plane that is sometimes advantageous called the polar coordinate system.

Instead of defining position distances in the x and y direction from axes, we define position
using distance from the origin in a specified direction:

4 Converting...
rectangular to polar polar to rectanqular

r=yx’+y x=rcosd

wp=2 y=rsinf

X

The angle is specified in standard trigonometric
position...0 along the positive x-axis and increasing
positively counter-clockwise.

We can locate a point in the plane two ways, and can convert between methods:

x, ¥ r. 0 x,v - r. 8
(3,4) —(6,0.9273) (o, 3)_}(3*,3%) (4 574) >(-243. 2
Y I L, . 5
r ,x;—y“ J3 44 =5 - 'Ir"-tyz 2 |'01+(_3]- _3 x:roos&:éms(s%}ztl
tanf==—=— y 3
tan? —: = Hume’gﬁncd = reinf= 4gin(5%}=4
3r
==
2

; ;

L
1
2
oy

Be careful about angles that arctan provides...
The arctan function can only provide a single angle as output and it is always between -Z 5%%

Z
but this may not match where the point is on the sketch:

Example: Convert to polar coordinates (—2J§, 2)

r=1|'.t2+y2=.||22+(--2J3_']:=4 f‘
2

tang=2 =

x_—2~4{§

2
f=tan”'| ——= |=-0.5236
& (—2\6]

...gives an angle in quadrant IV

To get the correct angle, we need to add pi: —0.5236+ 7 =2.618



You can use tables or calculator 'polar mode' to graph
#1. Sketch r=4cosé@

= 4rcos@
Xyt =4x
(;rc2+15$34:)+_y2 =0
(x-2)"+)* =16

But you could also plug in angles to get radii:

3 oaly NI sl cl"-b

r

a(1

—
1
F=S

=5

(negative radii are graphed in opposite direction)

If you can use a calculator, there is a polar mode:

Equations of curves can be written using either rectangular or polar coordinate

We can use our conversions to convert equations from one form to ancther. Sometimes, there are
'tricks’ we need to use. Itis best to see how this work by considering examples.

Convert from rectangular to polar form and sketch:

#2.x* + y*

=16

#3. x* -y’ =



Convert from rectangular to polar form and sketch:
#4. x* +y' —4x=0 #5.x=5

Convert from polar to rectangular form and sketch:

#6. r=2 #7. r=8sin@



Convert from polar to rectangular form and sketch:

5w
#8.0="2
6 #9. r=2cscd #10. r =cot@cscd

Sometimes the shapes get very complex, and some have names

"=45i“(5‘9) r=2+3cosd r=2+2cos@ r2=4cos(26)
"rose" "limagon" "cardioid" "lemniscate"

(microphone patterns)



Intersections of two curves in polar

Sometimes we need to know where intersections occur in polar coordinates. To find intersections, first always
graph to see what is going on, then treat the two curves as a system and solve simultaneously.

Look also at the graph to see if the origin (0,0) is an intersection - because that corresponds to r = 0 it can occur at
any angle and often does not arise as a solution from the system.

Examples...Find the intersection points of the curves:

#11. r=3(1+sin@) #12. r=4sin@
r=3(1-sin@) r=2



Unit 8-5: Polar derivatives, tangent lines, and arclength

Derivatives in polar and tangent lines

The equations to convert from polar to rectangular: ~ x=rcosd
y=rsinf

...are almost like parametric equations: they express x and y in terms of other variables (although in this
case in terms of two variables, r and @, not just one variable {. So we can pick one of these variables, ¢
and express r in terms of that, so that x and y are now in terms of just one variable 4.

r=f(0) x=f(6)cosd
y=f(8)sin@
Now, x and y form parametric equations, so we can find the derivative with the Chain Rule, but this will now
require Product Rule as well;

dy) _
48 [d(? = 718)(0848) +dud(.1(£)) (as long as the denominator is not zero)

dx [dx) ~ f(0)(~sin @) +cosa( f'(0))
do

Horizontal tangents occur when %ﬁ =0 which is when the numerator is zero, therefore jwhen %= 0
i

dx

Vertical tangents occur when % is undefined, which is when the denominator is zero, thereforejwhen = =0
oy &

We can use this result to quickly locate the angles where horizontal or vertical tangents occur.



#1. Find the points of horizontal and vertical tangency to the polar curve » =4siné@

and find the equation of the tangent line at @ =%



Arc Length in Polar Coordinates s [ -
Starting with the arc length formula for parametrized functions: arcfengh‘Ff (E) +[—J dt

and if we want to use ¢ as the parameter, we have r=f(6)
x=rcosf = f(0)cosd
y=rsin@=f(0)sin@

i 2 2
...then: arcfeng!h=j\j[%} +(;—¢G] de

we can compute the two derivatives using the Product Rule:

dx . ;
=5 =/ (0)(~sin0) +cos0(1'(9)) % = /(8)(cos0) +sin0( "(0))

the inside of the radical in the integral is then:
So arc length is:

2 2
do do arc length = j P2+ [__J do
) do

=(£(0)(~sin0) +cos0(1(0)))

+(/(0)(cos0) +sino(1'(9)))

= [f(t&‘}]2 sin”@—2f(0) f'(0)sinOcosf + [f'(eﬁ')]2 cos’ 0
+[ £(0)] cos? 0+ 27(0) f(0)sinOcosd +[ ()] sin’ @
=[£(0)T (sin® 0+ cos* 0) +[ 1(0)] (sin” @ + cos® 0)
=[s@F «[r()]

2 [dr)z
=r*+| —
de



Examples of arc length in polar

Finding arc length is then finding the portion of a single curve which you want to integrate over and determining the start and end
angle values. One thing to be aware of it that some curves loop over themselves multiple times if the range of the parameter is large
enough.

#2. Find the arc length of the top #3. Find the arc length of the curve » = 2sin(36)
half of the cardioid » =2 —2cosé&



Unit 8-6: Area in Polar Coordinates

Area of a Polar Region

We can use a definite integral to find the area of a polar region. To derive the formula, we start with something
like a Riemann Sum for rectangular area... except we will sum trianqular segments...

y=7(x) e
A = rAerngn‘c
O=a
g
A= f—bh
a b 3:&2
- The height of the rectangle is o
A= [ A just the radius at that point. P fl(arclengrh)r
x=a rd@ O=a 2
< rdo o=p
A=J-hw A:Ilr{rdﬁ)
x=qa r f=a 2
x=b =
H H arc
A= _[f(x)afx For @ in radians === A=1Jﬁ 2 40
= arc=rf O=a
d(arc)=rd6

#1. Find the area in the interior of » =3cosé@

Always graph first, then imagine covering this area with radial 'slivers'

We can either integrate triangles from 6=—% to 6=%
or we can double the area integrated from =0 to 9=%




#2_ Find the area in the inner loop of ¥ =1+2siné

Area between two curves in polar

We can find the area between two curves by finding the area of the outer region and subtracting the inner region (similar
to the 'top - bottom' case in rectangular area between functions, in this case 'top’ means further from the origin).

a=p

& 7. =/(9) Voer = S (6)

=

A 14
Abe.rween = Aumcr = ';'Jl(f(g))z do = A"’“"e’ = EJ.(g(Q))2 do

17 2 2 (If you combine into one integral, make sure
Apcveen *EI[(JC(Q)) _(3(9)) ]dé’ you square each radius function separately)

You need to always sketch first so you can see where intersections occur which usually define start and end angles.
Also, be aware of the fact that in the middle of an area the 'outer' and 'inner' curves can switch.



#3. Find the area inside » =3sin & #4. Find the common interior area of
and outside »=1+sinéd r=2cos8 and r=2sinf



Unit 8-7: Vectors (properties and applications)

A vector is a directed line segment, and is characterized by its length and direction.
textbook indicates a vector by
making the letter bold (too hard fo

do by hand, so we add an arrow

y Y above the letter)
-
_‘(xovy()_) (xgsy(]) =V
is a point is a vector
X X

Initial, terminal point, length, direction
A vector can start from any initial peint, but if you place its initial point at the origin, length and
direction work the same way they do for polar coordinates:

_\7="-<x2 —X V) ""}71)
—_—
V:

terminal point
y (3,4) <3’4)
v length: M 342 =5
0 X direction: 9—tan’' (i] =53.15°
(0,0) ’
initial point

The length of the vector along each axis direction is called a
component. Each vector has two components:

y
=
v/ | 5
: compy v
0 |
—— X
compyy =
compyV

You can think of the components as being like the shadow of the
vector on the x or y axis if you shined a flashlight on the vector.

This is called the projection of the vector onto
the x-axis or y-axis.

Converting between components and length, angle

y -
N V= (compx,compy>
/ Icomp,V v 2 2 N
/o Py V= \/compx +comp, comp, =|v|cos@d
= X [ comp, =i
compyy 0 =tan comp,, =|v|sm9
comp, '

Iv‘ =3 +2° = \/E comp, = \/1—300533.7"

6 =tan' [%) =33.7° comp, = J13sin33.7°

V13 c0s33.7°



Vector components from initial and terminal points

If a vector is defined by giving its initial and terminal points, you can find
the components by subtracting end-start for each component:

(4.6)

w=(4-1,6-2)=(3,4)
(1.2)

X
Vector equality

Two vectors are considered 'equal’ or 'the same vector' or 'equivalent’ if
their magnitudes and directions are the same, regardless of where the
initial points are located: (4.6)

-—

y (3.4) w

-
v

f (1.2)
(0.0) X

v=(3-0,4-0)=(3,4)  w=(4-1,6-2)=(3,4)
= -
vV =w
Vector Addition

Adding two vectors is the equivalent of moving along the combined
paths of both vectors to the new terminal point.

Geometric Algebraic
-—
y b = <5,]> (8,5) ;1 o <3’4>
e b={(51
a={34) < L < >
a+b a+b=(3+54+1)
(0,0) 5 a+b=(85)

Placing one vector's tail to the other's tip results in a new
terminal point for the addition vector

the 'triangle law'
Vector Addition is commutative

Reversing the order of the vectors being added gives the same result:

Geometric Algebraic

(8.5) a=(3,4)

h={5,1

> B (5.1)
a+b=(3+54+1)
(0.0) - X b+a=(5+3,1+4)

the 'parallelogram law'
the sum is also the diagonal of the parallelogram



Multiplying a vector by a scalar

Multiplying a vector by a scalar (number) multiplies all components by that
value, and scales the size of the vector...

y/

a=(1,2)
3a=3(1,2)
3a=(3,6)

-
a

(0.0)

...which changes its length, but not its direction.
Negative vectors
However, if the scalar is negative, it changes the direction 180%:

y

...which changes its length, but not its 'direction’.

Vector Subtraction
Subtracting a vector is equivalent to adding a vector multiplied by -1:

Geometric Algebraic
a=(3,4)
b=(51)
a-b=a+(-b)
a-b=(3,4)+(-5,-1)
" a-b=(-2,3)
oo RZ- D subtraction is also geometrically equivalent to

combining vector 'tail-to-tail' (drawn from b to a)
b={s.1}
PROPERTIES OF VECTORS If a, b, and ¢ are vectors in V, and ¢ and d are
then

l.a+b=b+a 2.a+(b+c)=(@+b)+c
3.a+0=a 4. a+ (—a)=0
5. c@a+b)=ca+cb 6. (c + d)a=ca + da

7. (cd)a = c(da) 8. la=a



Vector computational examples

#1. Show vectors are equivalent: #2. Find the magnitude of each vector and 3v - 2u
u: (—4.0), (1.8) Sketch the original vectors and 3v - 2u
v: (2.—1), (7.7 >
u=(3,6)
_>
v=(5-2)



Applications of vectors

Things to know:

e |f objects are not moving, then the sum of all force vectors = 0,
ZH (horiz components) =0

V (vert components) =0
2 ponents)

= |f objects are moving, then the overall motion is the sum of all individual motion vectors.

#3. A boat heads straight across a river at a speed of 4 mph, but the water in the river is flowing
a 2 mph (as in the figure). What is the resultant and direction of the boat?

. ’
i
12 mpn;"
A AAS 1 s NP PP
4 mph resultant motion
A A A N ALA A

7




#4. A star-shaped decoration is suspended, motionless, from two points as shown in the figure.
If the decoration weighs 10 Ibs, find the tension in each wire (the magnitude of each tension
as well as the component forces)?



Unit 8-8: Vector-Valued Functions

We've know how to represent a plane curve using parametric equations...

x=t*-4

1

=—t

2
-2<t<3
i X ¥
21010 -2
1] -3 112
0] -4 0
11-3 112
210 2
3 5 312

...and we've defined how vectors work...

Yy
<xoe}’0) =-\:
is a vector
X

We can put these ideas together to define Vector-Valued Functions

x=t'—4
1
=—t

2
-2<t<3
t x ¥y
2 0 2
S I T
0\l -4 0
191-3 112
2 0 2
3 5 32

At each value of the parameter, t, we define a vector with
initial point a the origin and terminal point at the point on the
plane curve given by the parametric equations

r(2)={0,-2)
> .
r(0)=(-4,0) ()= <r’ -4, —;4>
r(1)=(-3,1) )
o These are sometimes also called
r(3)= ,{5, %\ 'Vector Functions' or 'Position Vectors'

The domain of a vector-valued function is the allowed values of the parameter

x=1>—4

The domain is the
possible list of

1 x ¥y
1 1 /<*7
A3 r '
ol4] o
i3] 12 \\‘T\l
210 2 =
L35 | e
,/ |
¥ \

/

f
r (1) "I\IE —4\%r )

L f

parameter values o output of the

function are the
resulting vectors (there
really isn't a 'range’
although you could
think of the plane
curve as representing
the range of the vector-
valued function.



The domain is defined by the allowable values for both of the parametric equations

If you are determining the domain of a vector-valued function, you start by assuming that the
parameter can take any value, —w0 <t <

Then remove from the domain any parameter values which either are not allowed:

o The function definition itself may restrict the domain: —2<r<3
» In a real-world problem, the parameter t may represent time, in which case negative values would not make sense.

o Remove any parameter values which make either component parametric equation undefined:
« Dividing by zero
s Even roots of negatives
* Logarithms of zero or negatives

#1. Find the domain of the vector-valued function: ?(;)=< 4—:2,—>

Limits and Continuity of Vector-Valued Functions

If you approach a particular value of the parameter from lower and higher values, a particular vector is being approached,
so we can define the limit of a vector-valued function as being the vector approached...

-3 2 I . »
r(f) <f 4, 21‘> oo [1m.r (1) |f g 5

N = 210]2
lim r (1) A3 -2
i N ol4] o0
lri£r|1<f2 —4, %r> lim r () | ; 'g’ ;Q

I 315 | 32
<Iimf2 —4, Iim—r>
t=1 =1 7

, | A vector-valued function is said to be continuous on an interval if the

<(|) =4, 5(1)> function is defined for all parameter values in the interval and the limit exists

as the parameter approaches every value in the interval.



Derivative of a vector function

Recall from earlier: For vector-valued functions:

y =f(x)

X x+4h
 f(x+h)-f(x) 7(t+h)-7(1)
Fix)= lim 5 r (!)— LI_T: .
The derivative of a function (defined by A similar limit structure defines the derivative of
the of the slape of the secant line) the vector function. Before taking the limit, this
givens the slope of the tangent line to is a vector between two points on the plane
the curve at x. curve which is roughly in the direction of the

curve at the point where {=t.

The vector-valued function is a vector from the origin to the
point on the plane curve.

The derivative of the vector-valued function is tangent
to the place curve at this point and represents the
current direction of travel as the parameter is
increasing (so it is drawn with its initial point on the
space curve).

A similar limit structure defines the derivative of
the vector function. Before taking the limit, this
is a vector between two points on the plane
curve which is roughly in the direction of the
curve at the point where {=t.
Finding the derivative of a vector function at a parameter value

Although you could use limits to evaluate the derivative, typically we find the derivative by simply taking the derivative of
each of the parametric equations of the vector-valued function using derivative shortcuts, then plug in parameter values:

?(r)=<12—4, %I> r(t) <2: —>

;(—2]=<(—2)“—4, %{4)}:{0,—1_} #(-2) {Z{ 2), %, (-4 % #(0)

(2.5)

r’(u)=<{u]“ ~a, _;(o)>=<—4,u) r:(U)z-:::Z[U]. =) =-:le:0. 0
:(')‘<{')J“" %{')>"'(‘3'%> r¥(|}|_('2(1), l\, {2,

7(25)- ((15}” a, %(2-5))-42-25‘1,25) 7 (2.5)= (2(2 5), —;-—{5 %:}

As you might imagine, if the parameter t represents time and the vector-valued function represents position, then the
derivative of position gives velocity, but now as a vector we know not only the speed (magnitude of velocity) but also the
direction at every value of time (this is the subject of the next section).



Properties of vector-valued derivatives
Things like product rule, and chain rule still apply...

'8 3
THEOREM 9.16 Properties of the Derivative
Let r and u be differentiable vector-valued functions of r, let w be a differentiable
real-valued function of ¢, and let ¢ be a scalar.
1. %[(ﬂﬂ] = (‘l"(f) Constant Multiple Rule
d ; "y .
7 E[I‘(” = - II[I'}] =r'(f) = u'(r) Sum and Difference Rules
3, %[W{”r{”] = “-(f}r'[[) - u"(;}r{f, Product Rule
d [ L -
4. E}[r(\t‘{l’))] =T (W{I’”W (1) Chain Rule
N 7

-—b
#2. Find the derivative of r (t) -

Integrals with vector-valued functions

Because integrals are essentially anti-derivatives, we can also find integrals with vector-valued functions. As with derivatives, we
just take the integral of each component's parametric equation separately:

Indefinite integral: _[?(z) dt = <If(t) dt, _[g(r) dr>

b _

Definite integral: I :(I) di= <j1f(f) dt, j'g () dt>

#3. Evaluate j?{:)aﬂ' :'f;:(r):(cosf, f"'—t)



Unit 8-9: Velocity and Acceleration as Vectors

Motion in one direction only

Earlier we learned that if a function represents distance (displacement) vs time,
then the derivative is velocity and the 2nd derivative is acceleration:

graph of displacement vs time:
distance (displacement): s(¢)=¢"—5/+8 m

S
P,
| sms s(t+h)-s(t) .
average velocity: V,, = br h (1, s(t) (t+h, s(t+h))
instantaneous velocity: v(f) =lim S(!L’Z_S(I) = s'(f) t
h—0 -
v(t)=2t-5 m/s t t+h
1D motion graph:
i,
acceleration: a(t) = v’(!) C."-_

a(t)=2 m/s’ 3 h > S

Motion in 2D

To analyze motion in 2 dimensions, we can represent the position on the 2D plane as a vector-valued function (a 'position
vector' pointing from the origin to the location of the object at that time.

Then the velocity vector is the derivative of the position vector: y

position: ?(I) = (I(f)a J’(‘)) ’

_>
velocity: v (t)

I
w‘h
—_
~
~—
Il
—_——
H‘\
—_
T~
<
\<‘||
—_
~
—
g
x <

The speed is the magnitude of the velocity vector, but with a vector for velocity we know the
direction the object is travelling at that time.

The acceleration vector is then the derivative of the velocity vector (and the 2nd derivative of the position vector).

> acceleration is in the direction of the
Hion-. - force causing this direction change
position: 7 (1) = <x(t), y(t)> y at this point in time

velocity: ::(t) = ?(t) = <x' (t), y'(l )>

acceleration: :(:) = ;r(t) = ;:(t) = <x”(t), Yy (t))

The 2nd derivative of position is related to concavity but with a position function, what causes
an object in motion to deviate from its course is a force. Newton's 2nd Law of Motion is }?:m:
which states that if a force in a particular direction is acting upon an object, there is oF
an acceleration of the object in the direction of that force. (The mass is the property

of matter which resists changing direction when force is applied: small mass = large
acceleration for a given force, larger mass = small acceleration for a given force.)



Meaning/interpretation of acceleration

This allows us to explain things like circular motion. Imagine a ball connected to a string, and
twirling the ball around in a circle at constant speed:

Although the speed (magnitude) of the velocity
vector is constant, the direction of velocity is

constantly changing for the ball to move around
the circle.

The acceleration vector is always towards the center of the
circle and is caused by the force the string exerts on the ball.

In physics, forces always cause accelerations - but not
necessarily changes in speed. The change in velocity caused
by the acceleration can be a change in the direction of the

— — velocity vector (even when the speed is not changing).

F =ma

Given one function you can use derivatives or integrals to find the other functions

?(,) position ;’(!)

derivative C ) integral
— . —»
v (;) velocity v (‘,)

derivative C ) integral
- —
a(t) acceleration a(t)

Remember, when you use an integral, you need to include an integration constant, which in this
case would be a vector.

#1. ?(l)=<tl +2cosi, sint —t2>

Find v (1), a (f)



#2. a(f)=(t, -10), v(2)=(52), r(1)=(3,4)

Find v (), 7 (1), 7 (3)



Displacement vs. Total Distance

When you take the antiderivative of the velocity function as a vector-valued function, the velocity
includes direction, so the resulting position represents the displacement of the object (the
position of the object):

displacement | v (t)d :<fx-(r)dt, f y'(r]dz> — 7 (b)- 7 (a)

a a

If instead you need to find the total distance traveled then you can do a scalar integral of the
speed:

b
total distance traveled: j

?(;)‘ i =:[\/[x'(f]]2 YO @

#3. a()=(22), v(1)=(3.5), r(1)=(26)
Find ;’(1), ?(r}, ;}(2) and total distance traveled from ¢ =0tor=2



Displacement vs. Total Distance - another example to illustrate the difference

A particle move in the x-y plane according to the position vector ;)(t) = (2 cos(t)+t, tsin(t)+ 2)

Find the displacement and total distance traveled over the interval 1<7<5

displacement

r (5):(2cos(5)+5, Ssin(5)+ 2)
=(5.567, —2.795)

?(1}:(2cos(1)+l. Isin(1)+2)
=(2.081, 2.841)

7 (5)-r (1)

(5.567, —2.795)—(2.081, 2.841)

(3.486, —5.636)

a vector from the starting point
to the ending point

"

total distance traveled
I @]~ [T +[y )T
v (£)=(~2sin(t)+1, tcos(t)+sin(1))
:[J(—Zsin(:)ﬂ)z+(tcos(e‘)+sin (o)) d

11.465
the distance along the path




