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AP Calc BC — Lesson Notes — Unit 7: Infinite Series

Unit 7-1: Sequences

Sequences are functions with integers as the domain

A seguen(ﬁeg;js. just a list of numbers in a particular order, but it formally defined as a function whose domain is the set of
positive integers (usually starting at n=1, although sometimes starting at n=0): :

w1 2 3 4 5 .
sequence: 5 10 17 26 37

For some sequences, it is possible to define the pattern by writing the output as a function of the value of m
fin)=a, ‘“»-—“(#‘H*l)2 +1 {this is the expression for the nth term of the above sequence)

n is_tﬁi%eci the index which lacates the position of a particular number in the sequence

ap is the expression defining the n™ term of the sequence

Given an expression for the nth term, you may be asked to write out some terms of the sequence:
N -7 3

#1. Write out the first 4 terms of the sequence defined by ¢, =(~1)" m’iwi i
' n Z v % é ' \.‘ , y

~ Limit of a sequence ,
In calculus, we are mainly concerned with whether or riot & sequence approaches a limiting value as n approaches infinity.
Some sequences approach a single numerical value and these are said to converge. Other sequences go off to positive or

" negative infinity or oscillate between values and these are said to diverge.
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If a sequence converges, there are various methods we may need to employ to determine the limit of the sequence.

If youate allowed to use a calculator, you canénter the expression for a, in as a function and use table features
to quickly ses if a sequence converges or diverges:

a1 3N .
a=(0"
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But to know for sure we need to find the fimit analyticatly.
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Finding the limit of a sequence .a_natyﬂcally

a, =1 2

We first try evaluating the limit. After graphing, we can see that the sequence is converging to a number and
the sign is osciflating, but the value around which it is converting is determined by:  3»

1

w41

We try evaluating this imit as n approaches infinity, initially by plugging in a large value:

3n oD

This is an indeterminant form, which allows us fo use L'Hopital's Rule:

fim— = fim - = =0
mwpwl —win o

So we verify that this sequence does indeed converge specifically to zero.
Two motre exampies:
Does the sequence defined by the expression for the general term converge, and if so, to what value?
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Properties of Limits of Sequences

A number of propertiies and theorems for functions and limits also apply to imits of sequences:

Letlima, =1L and hmb =K

Prepo>
1) Scalar multiple: lim (ca,)=cL
2) Sum or difference iig&(a" +h )=L*tK
3) Product : lim(a,b,)=LK

. . ta ) L L
4) Quotient : 111,&(-5) =¥ (forb,=0,X #0)
A number of propetties and theorems for functions and limits also apply to limits of sequences:

5).Absolute Value: ¥ !‘;%lanlm() then E;'é“n =} 6) Squeeze Theorent: It‘;l,ix:aﬁ wLw}i?‘x‘c»and there exists an infeger &
suchihat g, <8, e foralln> N, mmb,, X

E’:-rtn

{If a series is oscillating around
zaro, then the sequence
converges to zero)

{if you can't evaluate the limit of the sequence directly but
car find functions which bound the sequence above and
below which both approach the same value, then the
original sequence converges to this value - rarely usad)
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Monotonic and Bounded Sequences
If we just want to know if & sequence converges but do not necessarily need the fimiting value we can
use the foliowing definitions and‘theorem:

A sequence 4, is monotonic when ifs terms are nondecreasing: ¢, £a,<a,s..4, <.

or nonincreasing: a, 2a, 24, 2..a, ...

A sequence 4, is bounded above when there is a real number M such that a, < M for all n.
The mumber M is called an upper bound of the sequence. v ‘
A sequence 4, is bounded below when there is a real number N such that ¥ g4, forall n.
The number N is called a lower bound of the sequence.

A sequence 4, is bounded when it is bounded above and bounded below. .,

If a sequence q, is bounded and monotonic, then it converges.

This example shows how these definitions are used...
3n

Determine whether the sequence is monotonic and whether it is bounded. 4, = s
¥

Monotonic? Use the derivative to determine where increasing/decreasing:

- oy (neR)3-3n(y 2 o) . ) ; —0 £ s fe _
f(”)mn»c»z £ sy Gy S{n)=00r DNE: nmv‘he;mf testing n=190, f'(0}> 0 (increasing)

il

> 4]

increasing everywhere
.50 the sequence is monotonie {specifically, nondecroasing}

. ek ; 3{1
Bounded? Since it is increasing, the lower bound value wouldbe atn=1. g = (1)(33 =1 lower bound

Tk nod wi ] ches infinity: == B e 2 e
he upper bound would be as n approaches infinity a, ”imn+ 5=
by L' Hopital : migggmm?, upper bound
...50 the sequence is bounded

Therefore the sequence gonverges.

Finding an expression for the n' term
In order fo analytically determine convergence, we must have an expression for the n term, and some
problems just directly ask us to find this for a given sequence,

First, you can determine if the seguence is arithmetic or geometric which each have defined formulas:

arthmetic: 10 7 4 1 -2 a,=a,+(n~1)d

j'; t?ah_'é’ -3 the common difference, d a, =10+ (n—1(-3)}=10-3n+3=13-3n

25 25

geometric. 100 50 25 = =

W v ‘
«1/ %1/ =1/ thecommon ratio, r a, =a(r
% %o

a, =1 Gﬁ(ﬂ)
2

Ak

NN

If the signs alternate, inciude multiplying by (~1)" or (~1)""

" 1y
~100 50 -25 3«215- -3 a, =(~1) 100(5]



Finding an expression for the n term

You can also try writing the values of n below each ferm, then try diffarent operations on

o~ sequence: @ @ 37 «— fhese,,
- 1 2 3 4 5

n:

L 1 @ @,_mare one larger than these

a, = (n + 1)2 41

More examples...

#4. List the first 4 terms of the sequence:

a, =1-(0.2)"

[calculator funclion seq under list, OPS]

Seq (l—(m)?‘, X 1, Y, !)
ﬂ-y) Vor %"'f‘ &)‘g’fyﬁ){@f
Lor é{y Aﬂ’ld) '

3 b8, 096, 0992, 0.

#6. Determine if the sequence converges
and if so find the limiting vaiue
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#8, Find an expression for the nth term
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#7. Determine if the sequence is
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Unit 7-2: Series and»Convergence

Series vs. Sequences

AS sequence is a set of numbers in & panzcular order but a series is the summatlon of the terms of a sequence. We typ;cally
use sigma notation along with the expression for the nth term of the series. Comparing a sequence and corresponding series:
1

1 1
Sequence: = e
A G = 16

PR

1
2

. =1 1 1 1 1
Series: s T e ot

-2 2 4 8 16

Finite Series: If there are a fixed number of terms in the series, we say the serfes is a finite series:

21 1 1 P15
e T e e ao ‘
Z{ » 2747816 16 Finite serles always converge to a computed sum value,

Infinite Series: If there are an infinite number of terins, we say the series is an infinite serles:

@] Infinite series may or may not converge o a sum value
1 1 1.1 1 9 0 > ma um vl
57:35 + 2 + g + 16 =27 (much of this unit is about how to determine if infinite
Al

seties converge and if so to what sumj.

Convergence of Series vs. Sequences

We say & sequence converges if the values of the terms approach a numerical value as n approaches
nfinity...

1 , |
Sequence! a,,w»i; 5 7 % 16 "

...and our main way to determine convergence is to compute the limit of the expression for the nth term as n approaches
infinity:

1 1 "
hmm meem (|, 80 this saquence converges to a value of 0.
vy T opy

We say a Series converges if the sum of the terms approaches a numerical value asn approaches infinity.

$L_1,1,1,1
42" 2 4 8 16

NOTE: The value to which the series converges is different than the vaiue to which the gequence converges.

One way to determine convergence of a series is to consider the sequence of partial sums of a series.
A partial sum is the sum of the terms up to a specified value of n:

Partial sums:

S =l To determine if a series converges, instead of taking the
2 %zmlt af the axpressmn for the nth term, we take the limit of

s, L1 1.3 on I th partial sum as n increases..
2 4 4
1 1.1 7

5=2*2"%"%

A mwia—%«e%f i%m%% .since this limit approaches the number 1, this infinite
i 1 - " series converges and its sum is 1.

8, 2 o b e 25
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Convergence of Series vs. Sequences
This particular series has an interesting geometrical interpretation as well...
P 101 ¥

&2 4 8 16 ..each term is a fraction which adds up to the fotal area of a 1 x 1 square:
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Example: Determine if the series cam}arges and If so, to what sum.
31
]

ilwiﬂ-&lﬂ

The nih partial sumwouldbe: §, =n

So we can determine convergence using the fimit: iﬁﬁ(”) =0

Bo this series diverges.

Determining convergence of infinite series when it is difficult to find S,,, Properties

in the examples we've seen s¢ far, we have been able to determine convergence by writing out some terms of the series, and
then finding a formula for the nth partiai sum, then taking the lim# of this partial sum expression as n appreaches infinity.

But sometimes it is difficult to determine a formula for the nth partial sum, so we need fo resort to other techniques to
determine convergence and/or to find the sum:

« Recognizing Known Series: Sometimes, we can tecognize that a given series is a particular known type which
has conditions which determing whether or not it converges and what sum it converges {6,

» Theorems and Tests: Sometimes, we can employ certain theorems or tests' to defermine whether a series
converges of diverges ‘

For series which converge, the following pro&:erﬁes also apply:

Let 2.4 and };lz, be convergent series, and let A, B, and ¢ be real numbers.
wet e

'

i Za =4 and :z;’-b" =B _ then the following series converge to the indicated sums:

$'(a,2b,)=A%B

nel




Geometric Series
One frequently encountered infinite series pattern we can recognize is the Geometric Serjes:

N _ iar”maé&amwarz +art +o.tart .. (fora#0)
n=l
We were infroduced to this back in henors algebra 2, but can now prove some things about geometric series.
The expression for the nth partial sum would be: S, = a+ar+ar’ +ar 4.+ ar™?
if we multiply this by r and then subtract this result from 8y §, =a+ar+ar* +ar’ +....+ @™
S, = ar+artvar’ +..va” var’
(1-r)S,=a~ar"

(1-r)8, -xa(a mr")

S, = *i‘—:i‘-f;(i o r”)

Taking the fimit. ﬁlgTﬂ;(lmf‘") since we are subtracting the term #" as n increases, this will go fo zero only if ir[ <1

. —_— a
Therefore, a gecmetric series will converge if [r} <1 and will converge to the sum T

Examples: Determine if the series converges and if so to what sum.

2 (1Y | o $af1Y PP
#1. 2.3{2) . #2. 23{;;_} #3. 3°3(L.1)

oy ek

el
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. 4 ‘ r=1.1 diverges

i
r= converges

e 3 3 . 3 5(51)
f{).lwrmlwlm % =4 01 a %(4)m 4 =1

a4 -r oy 1 (3

4 \4)

You can use geomelric series to investigate repeating decimals...
Example: Write the repeating decimal as a geometric series and as a ratio of two integers: 036

#4. ‘ 0.36 = 0.36363636363636...
2 0.36+0.0036 + 0.000036 +0.00000036 4+ ..
w y l "
- ;a.ss(waj

a=0.36

re= "}%5 converges

.9 _ 036 _ 036 _100(0.36) 36
ey T 9 99 99

100 100



The nth-term test for divergence

If we can't find an expression for the nth partial sum, and the series isn't geometric, we can al least
determine if the series diverges using the following theorem and fest.

Assume that > a, =lm S, =1 (even though we can't determine the S,)

e, .
It would be true that S, =5, +a,
lfwe teke L =lims,
=lim(S, , +a,)

=lim§, , +lima,

Bepth L

We know ,I,me S, =1L

but since n is approaching infinity it is also true that lim.S,

pas g

30 it must be true that L=1L+ f,ﬂ,,'?f, a,

which implies that the sequence {g.} converga]s to zero

Therefore: [If D a, converges, then lima, =0
il "

This is a theorem

The contrapositive of a true statement is always true, but the Inverse

or converse are not necessarily true or false.

We can therefare only use this test to demonstrate that a series diverges. oy

1) Compute the limit of the sequence for the series ilﬁ a,

=],

This {heorem isn't super useful directly:

If Zm converges, then lima, =0
)le . HEpIE
But remember from geomstry that you can either negate
the sides of a statement or invert them to form the
inverse, converse, ahd contrapositive? One of these, the
contrapositive is always true if the statement is true, so
the contrapositive of this theorem is also always true:

If lima, # 0, then ) a, diverges.
Ry Py

This is called the 'nth-term test for Divergence’

‘nthterm test for Divergence'

If lima, »0, then > a, diverges.

2} if the limit is non-zero. you can state that the infinite series diverges.

If the limit is zero, you can make no conclusions: the infinite series might converge or might not converge {and
if it doss converge, you do not know that sum fo which it converges).

Examples
Determine if the series converges and if so to what sum.
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Examples

Determine if the series converges and if so to what sum.

5 25 125
-f.:

Determine if the series converges
and if so to what sum.
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Find the values of x for which the
seories converges, and find the sum
of the series for those values of x.
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Unit 7-3: The Integral Test and p-series
The Integral Test

Much of this unit is about whether or not a series converges and if 50 to what sum. We've seen that sometimes we can
recoghize & given series as a particular form for which there are specific rules (like telescoping or geometric series) and we
can sometimes use theorems {like the n-th term test) for at least determining convergence. In this section, we expand our
list of recognizable series and theorems about convergence with The Integral Test:

if f is positive, continuous, and decreasing for x>1 and a,= f(n), then

ia,, and ff(x)dx

el

sither both converge or both diverge.

This theorem appiies when you have a series whose terms are always positive and always decreasing...in this case, we can
use an integral of the @, expressed as a function and if the integral converges then the series converges, -

important note: if the integral and series converge, ihe series does not (necessarily) converge to the same
value as the integral. We are just testing to see [f the serdes converges at sl

The Integral Test - proof

Much of this unit is about whether or not @ series converges and i 5o to what sum. We've seen that sometimes we can
recognize a given serigs as a particular form for which there are specific sules {iike telescoping or geometric series) and we
can sometimes use theorems (Hilke the n-th term test) for at least determining convergence. In s section, we expand our
fist of recognizable series and theorems about convergence with The Integral Test:

if you have a function decreasing from x = 1 onward and " :
represent the area belween x = 1 and % = n, we could set the " ingeribed arec }: f{i)
rectanghe helght using the RHS, but would mean starling at f= 2 wed
art we would obtainthe insoribed area:

Usmg ihe LHS for rectangle height we would start at i=1and

il
obtain the clreumseribed area: circumscribed area= Y f{i}
il

The exact ares Is belwesn these two values: g;,f{i} 5§ f{x)'m- % :}“; Fii

Using the ith partial Sumt. 5, = £ (1) £(2) + F(3) ... 7 ()
the previous area statement can be wriien as: 8, — F (1)< f Fixyae 5 8,
Assuméng that the infegral converges to a sumwhich we will c&ll L then 8 - f{l) sk

3, sL+1(1)
Therefore {«,}is bounded and monolonic, and by previous theorem it therefore converges, so }:aﬂ, COMVERgES.

\



Examples using the Infegral Test

Use the lntegral Test fo determine if the series converges or diverges:

2 n >0
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The series doesn't have to start at n=1

Use the Integral Test to determine if the series converges or divefges: {,,Q | | h
o 1 = ; 7 3&7
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p-Series and Harmonic Series

. e . : P11 1 1
Here are some more recognizable forms of infinite series! p-Series: X‘;}rm?;*%ﬁ;ﬁ« AT
sk d )

“The Harmonic Series™ i}m“ 14— ! e 1 o 1 LNy
gy ) 2 3 4

"The Harmonic Series" is called that because it relates fo music theory. f a string {or column of air in a wind or brass
instrument) is vibrating, it can vibrate in different modes:

i l l i ! pitch {frequency)

this mix of frequencies gives the instrument its timbre
{unigue sound quality)




Convergence of p-Series

There is a theorem for determining canvergeﬁce of p-series:

ned

. &1 1 01 1 01
The p-series E;;;mi-;»c«%«a—?;»s»z;%»m

converges for p>1 , and diverges for 0< p 3.

Proof: Using the Integral Test, / (x)m;lm; and E;obcmix’“"dx
1 ¥

If the exponent is positive, ~p-+1> 6, then b7 will increase without bound and the integral and series diverge.
The integral (and series) will only converge if the exponent is negative, bacause this moves the b7 term to the bottom of

i}

- x 9%
|=p+l],

fim
_"l’w "”’p‘ "1”1

fim
Mb»&w - p %1

onprl

b»»gwl

1=

+~§m1
4

the fraction. Therefore, the p-seties will converge when —p+1<0

which is when p>1

Examples using the convergence of p-series theorem

Determine if the series convergs
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More examples

Determine if the series converges or diverges:
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% Determine if the series converges or diverges using both the integral test and the p-series theorem: ‘Zni{
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Unit 7-4: Comparison of Series

Comparison Tests

We've seen a number of ways fo check whether a series converges or diverges which invoive sither recognizing the
form of the series or performing some caiculation using the series itself or a function representing the series. But
some series are difficult to analyze in this way.

So instead, we sometimes determine if a series converges or diverges by comparing it in some way to another series

for which it is easier to determine divergence/converge, There are called comparison tests and in this section we will
exampie fwo of these:

The Direct Comparison Test: Used when we know that one term is always higher than another, term by term.

The Limit Comparison Test: Used when the ratio of fwo seties is always positive as n approaches infinity
(meaning that, eventually for large n, one series converges to a higher value
than another, even though we can't say every term in one series is higher
than the corresponding term in the other series). )

The Direct Comparison Test

Here is the formal statement: Let O<a,<p, forall n

*: B
if Zb,, converges, then Za" converges.
#=l

2k

If )a, diverges,then Y 5, diverges.

P E]

Instead of a proof, let's understand what this is saying intuitively. If you have two series, and comparing each term,
term-by-term, one series (the b series) terms are always higher than the a series terms, then one of two things can

happen: -
7
» ®
. bseries values | o
e b series values . v e
™ - " . ® ® ® X
& sorles values  * . ., ° e @ ? aseriesvslugs
. P
: - 11 "
t 2 3 4 5 &8 T . 1 2 3 4 5 B 7

if the b serles is converging to a value, 1t 'squeezes’
the a between this value and 2er0, s0 a must aiso be
converging {although not to any parficular value)

If the a series diverges, then # ‘pushes’ the b vaiues
up too, so the b series must also diverge

The way we use direct comparison is for our given series, we need to identify a different series which we can show
is always above or below our series (term by term) but for which it is easier to determine convergence.

4 . . R N = 1
Example: Determins if the following series converges or diverges: 22 ~5
' #pe],

This series is similar in form o »"— and we can write out a few terms of each sefies...

#emd

] 1 2 3 4
&1 i 1 I3 i < 3 &
2TF 3 T OB OB a5
1 11 1 1 21 &
Z¥ 3 5 W @ 2yeXh

ik g

.fo convince ourselves that  0<a <b,

A

, Ty o “ . : ' %
Our new series is a geometric series 233; =»Z£(%} with r-——-% and since H <1 };5,7 converges.
ok wml HE

Since this series is always higher than our otiginal series, zm:

converges.
i} 2 + 3” '



The Direct Comparison Test

Here is an example that shows the divergent case:

Example: Determine if the following series converges or diverges: Z !

oy 2%‘\,;;
T 21 &1 . o
This series is similar in form to Z;V;;WZ,“;:; and because the denominator of our original series is always 2 higher,
b g P @ . @ ]
: « 1 & 1
. , " = L= C4 gl - - o e S b 0 < a, % b‘,
this new series is always higher then the original series "};,m ;; \ g;n A ?_:, 2 ,5h,

S 1 1
Z"’;"y;” is a p-Series with p =5 which diverges {p must be > 1 for convergence).

ik

Since this new series is higher series is above our original series, # diverging doesn't tell

us anything about our
original seties - turns out this was a bad choice for the other series,

We will need fo pick a different series to compare to, and maybe one which is instead lower than our original series,

*3

Ta stay under our original series, we need the denominator to grow more rapidly with n, so let's try the series Zi

ekt #1
" 1 2 3 4 s 6 7
LN 033 029 027 025 024 022 0215 (using calculator table function to check)
mZ‘l’*-Jn
Zl 1 05 633 625 020 037 0.143

wey M

This new series starts with terms higher than the original, but for n=5 and higher, it remains below our original series.
It doesn't really matter what happens with the first ferms - this is all about convergence/divergence as » —» oo

S0 we will now call the new series & and the original series b so we have:

£

* l‘..,.. s »l _ W
2= 25T =2 O<a,sb, [fornz4] -

sk g Tt

This new series is a p-Series with p = 1, so it diverges.

Since this series is always lower than our original series (for n > 4), 2: 1 NP diverges.
L 4
#1. Example: Determine if the following series converges or diverges: o
P 5 n =) 2 " nel, 4
, 2. _ x Weg es
R "”““‘ n=g . =1
> @ n 3N
: 3" 2
—’g‘;‘f’ 4‘“2;”! Shee. 2" < 27—
A 2 " -
/ = pushes 9 arel Z ?,}z Averges by besmitc sefes 1,
y?zﬂ»e.«u/““fl'm St

ni %ﬂ’,l alle Wg

by dived? CoupiSon L5t



The Limit Comparison Test

Sometimes a series closely resembles ancther series, but it is difficult to establish, term-hy-term, that even after
some value of n one series is always higher than the other.. In this case, we can use a different test;

K a,>0 b>0, and iiﬁgﬁwlramil,isﬁniwandpwmve,thm

e, and Y'b,  cither both converge, or both diverge,
=l

el

(Bee the textbook if you want formal proof of this or the Direct Comparison Test.)
Let's consider a few examples fo see how it works...

w0

#2. Example: Determine if the following series converges or diverges: ZW
it AL GF

Fer a similar form series, consider ignoring the constants in the denominator: Z“‘i“

et ¥
e
- aﬂ « . 7 - 7
Both series have positive terms, so now we need to evaluate the limit lim-% Iszﬁ«m lim I Zdn+S
! Hdriny bn wown y per m}m
w
. n P
= hmw TR e
a3p’ w4pt5 w0
_ by L' Hopital ;
This limit (L=1/3) is finite and positive so these two series will either both L m ow
diverge or both converge. Evaluating the easier series: == i}g}, oA
by L Hopital :
i.}_ is a p-Series with p = 2 so it converges, therefore o
2 = i =~ converges
et # . w6 3

1
e B1G0 CONVOTYES,
2 A —dn4-5 g

pait

#3. Example: Determine if the following series converges or diverges: igm{l‘,)

wek B
0 (=)
Lef's try this series: Z_}* lim % =it \2J)_sin(0) o0
et 1 wrah  wre 1) o 0
by L’ Hopital :
( 1 } 2
cos| -~ |¢{-n 1
" ny s ,

- 13& i = 1%“05(;) =cos(0)=1

So L = 1 s finite and positive, both series converge or diverge together.

o 1 e
Zfﬁ is a p-Series with p = 7 so it diverges, therefore
n]

K

Zsin(z—) also diverges.
n

]



The Limit Comparison Test will often work in place of the Direct Comparison Test
Earlier, we used the Direct Comparison Test to do this example...

N #4, Example: Determine if the following series converges or diverges: D L

) 2‘4"\/”

.-and determined that the serles diverges. It was difficult to find a series that was term-b by-term larger (and we had to select one
whech only became farger after a cerlain number of terms). We could have instead Jjust used the Limit Comparison Test:

Select another series, perhaps by ignoring the constant in the denominator: }; Z s
= nel P

X”z"%% (§) {use L'Hopital)

Evaluate the limit of the ratio of terms;

: - It
X"g” Z Zeee] - Which is finite and positive so the two series are locked together'
e Y - n"‘;

3 1 ‘ @ 3 M P .
Z“{;f; is a p-series with p <1 so it diverges, therefore the original series also diverges.

et 1y
More examples... Determine if the following series converge or diverge
o d‘*@d‘aleoa w i) s oAireet- "’M?*"‘\S*”‘ “”f%
#5. ZS P«jeﬁ@J #6. 2 " “5’25”
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Hm g, %0 This test c:mm 2 ysed
toshow copvergesos:

“Uieometric Series

{r+0) S &

pBeries .

At Seres | § (g, |Gt g and | rominder
‘ {f} 3‘ {}} : Tl " iy vﬂ:‘ e Eﬁg\,j < et

Integral

{f-is continuous, 2 S (. e
“positive, and o peFaldveonverges | | flrd dy diverges
; ﬁt’ﬁwﬁé}g; My I = Y i i e By« (

Remginder

#9. 24+3” (use Limit comparison) . Since ﬁ ;;Zi—&t
o 4y :
Zé /%_ " = 2 (-—p) ‘ /lé—)\(:e b“? jafléj‘éﬁ
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Unit 7-5: Alternating Series, Telescop'ing Series

The Alternating Series Test
An Alternating Series is a series in which the signs of the terms alternative from term to term:

S, et 1 1 1 1 1
w1} imml»——m e S e o
20" 3737775

We can test whether or not an alternating series converges by using the Alternating Series Test:

#1. Example: i(wl)" i

"
Ve Ao ==
P o

. b

=6
as 2 (80

foet

{

Iy n=os (2 v

’ Lt - .
L 2= Dl )

Let a, > 0. The alternating series

i(mi)" a, and i(m;_)’”‘ a,

il 2]

El)i%%aﬁ_ =0

Da,Sa, foralln

converge when the following are both true

e ZNME ?
-

)

Alternating Series Test can only show convergence

if the two conditions apply for the Alternating Series Test, then the series converges, but technically if these do not
apply, then we can't use the Alternating Series Test and must choose another test to verify that the series diverges.

#2. S (-1

rrek,

,)ahq q450
vrao

"
" +4 ‘

S nee. %Ao >0

aM a/u—g Laq
Fe.aheywtng Seriel
% ié”"{}% g«i’“‘”@

by e Aterarivy Series Teopt

skead . 0™ e Jes)-

EM() a4, = | =fo

»&\m _"'_l_: =| #o

U2ss Y

S al seres dest
Cait be usod

2
>0 nig # ' ' ’
o 2 (= oy fde, ef
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Telescoping series
Telescoping series are series which expand fo the form: (s, — b, )+ (b, — b, )+ (B, —B) + (b, —Bs) + ...
so that cancellation occurs between terms... S e st

leaving only the first and last term left:. 5,5,
For telescoping serigs, the nth partial sumis: S, =5 -8,
Since the first term is just a number, telescoping series will comlerge if the iast term hers converges: llm( ﬂ)
..and will converge to the sum: S =, —«hm( st )
We usually need to do some manipulation of the expression to see that a series is telescoping and also need to be
very careful with how the cancellation actually occurs. This is best seen by looking at a more complicated example.
Determine if the series converges and if so to what sum: %Wn (“M 2)
This a, has a factored denominator, which suggests we can expand using Pattial Fractions
(ﬁléz)mi* fiz : {Mﬁmﬁ o
man n #u .
2 s
A(n+2)+ B{n)=1 : ;;H(N@zl E(zn 2N+2) X{:z, n+2}
) o Y (G A m B
(4+B)n+ (24) (O)n+1 2 two terms with sublraction = lelescoping seres
Now, write out soms terms to see how the cancellation wirrks:
AESEAWEEEANENE RIS WE R4 TN B0 A
5’[(5”%7}‘”(2 4)"’"(3 GG )]
S coricellation happens, but one term is skipped
g e * F
' STEIN AR IR }ui”-'l BANEA
{6-DGFE I EFEED]
. 2’ ./ thisleave two terms at beginning and end
s0 the exprassion for the nth partial sum is: &, mi M%“?i?“ﬁi 2}
and the linit is: L }«Mw&mwmiw]mi[ }.w.,lw.,};}mi[ o~ ]mi A
z«mz[u«z s S ek 14»2 e 1+2 O-—& vy converges
o0 4
Y — Lo
#5. ,Z;n n+4) = 2 ( ‘4*‘(}
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Unit 7-6: Absolute vs. Conditional Convergence
Absolute Convergence ‘
Sometimes, a series may have both positive and negative terms (but may or may not be an alternating series)
for example: g '
g-sin(n)
“ o

w 84147 + 22732 + 01588 0473 0384 - 0078+ 01341...

One way to learn things about the convergence of such & series is to investigate the series with absclute value of @,

&

>

Had

smg”) Using the Direct Comparison Test, this series can be compared to Z«%
¥ e 7

2245 - ¥ 3
gin{r) 1 ..and lf is a p-Beries with p = 2 which converges, so this 'squeezes’ the
e} 5 e “~u" left series to also converge.

e 1"
0<a <b | ol
a4, =D, Therefore the absolute value of our original series, D =34 converges.
Bl

2y

How does this help us evaluate the convergence of Zw ? We need another theorem...
el ’

" ” ‘ C &sinn
ifaseries 3la| converges, then the series 3 4,also converges. Therefore 2-——;;(5»»1 also converges,

ng

The formal proof of this theorem is in our textbook, but consider this intuitively with our example:

$nsin(n)
o .
torm values = B414T 4 22732+ ,01588 0473 0384 — 0078 + 01341,
1
»

e n

Y

It doesn't really matter if We change these three negative values to be positive, what we

are adding to the partial sum is stilf getting smaller and small, so the sum is converging
to a value, as long as the magnitude of the values is getting smaller.

But the converse is not true...

Okay, so if the absolute value of a series converges, then the original series also converges. But the converse
would be, if a series converges, then the absolute value of the series also converges, and this is not necessarily

true. Consider this example of an alternating harmonic series:
By the alternating serles test...

& 1. 1.1 1
S () =l b
,,':,g,:( A limt = by S 4,
P 37 3

B Qi

n+l nm

this series converges.

2K

But if we took the absolute value: 2

#el

wit ]
(-1) =

This would be equivalent to this series: Z“ which is a p-Series with p = 1, which diverges.

ek .




Absolute vs. Conditional Convergence

There are specific terms for cases related to this, defined as follows:

A seties is calied Absolutely Convergent if }:i | converges (and therefore Za also converges.)

nek

A series is called Conditionally Convergent if _Z“n converges, but Zia,,] diverges.
ped P

A procedure you can use... >a,

sl

1) Check convergence of the ‘z“‘:l a)
absolute value of the series... *

wnd

/ T

. converges diverges
> a, converges absolutely 2) Perform the
Wl Alternating Series Test
converges divérges
za,, converges candiﬁana?ly 3) technically, you are supposed to
n=l perform a different test which
shows divergence {usually, nth
term tast}m
Z% diverges

sk

Examples: Determine whether the series coverges absalutely or conditionally, or diverges.
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{minor, but interesting fact): Rearrangement of Series

Later in this unit we rmay encounter series whete it is advantageous o rearrange the order of the terms, and determine the sum of the
series. Counter-intuifively, when you rearrange the terms of an infinite series it can actually change the sum o which a series 4f
convergent) converges to. We can use the fact that the series is absolutely or condtiionai convergent o predict things abeut the effect of

term rearrangement.
This is not an issue with a finite sedes:; 1432454 S=3
1434+85—24 §F=3

sl 1 1.1 1.1 1
But consider this series: X( 1) e N TR TR R T Vo

here are the partial sums adding 1, then 2, then 3, eic. ferms:
1, .5, .83, .58, .78, .62, .76, .63, .75, .6, .74, 6532, 7301, .6587 > n2

However, if you rearrange the terms Bke this: :
mllll.li'Illiii'
Z( ) ( ) 4*(3 6) s*[s i"("f) 12""(" "1'2)‘
now you get these partial sums: 5, 25, 417, 292, 392, .3083, 4869 —> »';winz

~ihe partial sums are converging on a different sum for the serfes, just be regrouping the terms!

This Is counterintuitive but is a real effect, ons of the many strange things that happen as we consider things invoiving infinity.

The reason this is important 1o us in this course, is that later we may went to rearrenge terms while finding a sum, but we don't
wart to do that if rearrangement would affect the series sum. Fortunately, this effect deesn't happer: for all series, and we can

predict when it will happen,

If a series is absolute convergent, then its terms can be rearranged in any order without changing the surm of the series.
If a series is gonditionally convergent, then rearranging its terms will change the sum of the series.




Unit 7-7: The Ratio and Root Tests |

—~ The Ratio Test
Let > a, be a series with nonzero terms: v The Ratio Test is especially
1) The series 4, converges absolutely when lim 9;—*'— <} 9;’;’;;‘?;‘;i‘if’if’j‘f?ﬁ";ﬂf;’";‘iﬁf
" previous term.
2) The series 4, diverges when lim 21l o1 or hm|2ed =0
a8 nol g
3) The Ratio Test is inconclusive when lim ﬁ;!m =1
n
o Sn+1
" i ? #2. a,=2, a,, =3
Bl ) n-t
s n! 2, 2, 2.13333333, 2.357894....
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The Root Test

Foraseries Y a,

1) The series 3_a, converges absolutely when limzlla,| <1
2) The series 3 a, diverges when limg/a,|>1 or limyfa,[ =<

3) The Root Test is inconclusive when limz/la,| =1
Reyehs

** The Root Test is especially good
for series invelving nth powers.
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If these tests are inconclusive, you must use another method to evaluate convergence...
d A S ay /mb(&m askes Ao cordiFRora) vS abis lefe casesance.
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Unit 7-8: Error for Alternating Series

Alternating Series Remainder
For a convergent alternating series, the partial sum §, can be a useful approximation to the series sum S.
You can use a calculator Series function o either write out the terms of a series, or to find partial sums:
' 2 ail 1
-1 L i
Y
To write out the terms of the series, enter &, as if you are going to graph and use a table:
4 a @ %

»r

1 -25 11111 —~.0625

8, S,

S,
1 861111 798611 ...
...0r you can just write out the terms, them sum them up manually. §, =1-25+.111111=.861111
Series Terms... Series Parfial Sums...
o @ a, a 5, S, 8, S,
1 -25 11111 -.0625 1 75 861111 798611 ..
Term vajues ' Partial Sums (he sum if we fruncate
q . the series after this many terms)
" | 1 [ ] o i
221 - I}
Z;(,.;) ~ . Fisipnyn. SNS Fhe frue sum value
Hue) !
Error or ‘Remaindee”
* . ‘ = difference imftv:'ean {hte ?azuai
Py £ fuf
. = n gt s e posieh 24 5f
. ,
s
Sw

# e @ 078861

0. W B I

ST a1 2+ 1111 - 0628

ned

truncating the series after 4 terms

Alternating Series Remainder

If you go far enough out in the terms (and the alternating series is converging) you can get as close as you wish to
the actual sum...you get closer {o the actuai sum the more terms you include in the partial sum. The difference
betwesn the actual sum and your approximation is called the Remainder and represents how much error there is in
your approximation:

remainder, Ry, =S ~S, for an N term partiol sum

The following theorem is helpful for approximating an altemating series sum;

if a convergent alternating series satisfies the condition @,.; 5 4,, then the absolute value of the
remainder R, involved in approximating the sum S by Sy is less than or equal to the first neglected term:

N ““SNI mlkﬂi Sy




#1. Example: Approximate the sum of the series by its first six terms: . Z_(wz)m 1

]
b ___M...L o j__f_ —~ . Bl ¥

leﬁrorl'dzf}kmwﬂ = iif,;%

! 2

—

.a aC, 4
7‘%1/;5;53 £5 < et see

5.433b < 5 <0, L3zMT

Finding N for a given allowable error

We can also determine the minimum number of terms a partial sum must have to approximate the series sum of an
alternating series to a given maximum error:

#2. Example: Determine the number of terms required fo approximate the sum of the series i (Wi)’”‘z ”__1___'
with an error of less than 0.001: ] n4
f ; b
Trancade hcliling N fenns l
dren  error| £ vt tem) = Cus)!
. l(e/mfl< 0‘10‘9)
\
— . 0.09]
eyt |
(N1 2> 002
M > o z
N> Yoo —1 = 1.62% 7‘
\;sz"!em\,( [
- = (1) n
#3. How many terms of the series do we need to approximate the sum to an error of < 0.002? > o
e :
N , . <~ 4
lemr) < “gm oo, 2o 2o, L = L
. “ - ‘il Ll?.- Va ({Lf \{’s"' Yy
oy Szfez)r (125) Hlowd) +(.018) #((088) [+ (%@
41»00'3«@7? alf~to | ‘ ‘ L 0,062
Solve. v : ’éww@j‘@’@»
M;‘L &EW "(Q \)\9- } ‘i‘, ‘ , " W,,»munmﬂm‘mj‘www
2 N = & —uns

wmgwwkﬂ S



Unit 7 Part 1; Strategies for testing Series

Different textbooks suggest different ‘orders® of tests to try. My approach is...

Tey these, in order:

1} Does the nth term approach 07 if not, the series diverges by the nth ferm test.

2} Is the series form Geometric or p-Series or an Alternating Serles? Use matching test.

3) Factorials or rules where next term is & funciion of previous term? Use Ratio Test

4) Does dropping a constant make it Geometric or p-Series? Limits {or maybe Direct) Comparison
) Is the whole a,, to a power? Root test

6) Denominstor factarable? Partial Fraction expansion to Telescoping Series

7} Integral test as a last resort

"\

Only need to check for conditional vs, absolute aonvergencée it the question directly asks for this and the
series has a mix of positive and negative terms.



Unit 7-9: Power Series

Powe i
-~ r Serzes

In this section, we will study Power Series which are defined as follows:

If x is a variable, then an infinite series of the form:
™, 2 ax s
Daxt=aytax+ax’ +ax b A ax ..
naf
is called a Power Series. More generally, an infinite series of the form:
Sa,(x—c) =a, +a(x—c)+a(x—c) +a(x—c) +...+a,(x—c) +..
k) o

is called & Power Series centered at ¢, where ¢ is a constant.

Examples of Power Series

0 x?.! xl xS
A Power Series centered at 0: Zm = ] X o e e e
' w0 1! 21 3

A Power Series centered at -1: i(wl)" (x+1)" =1=(x+D+(x+1) = (x+1) +...

A Power Series centered at 5. i%(x ~5) =(x— 5)4*%(3:“ 5) + %(x ~5) +...
wel

Radius and Interval of Convergence

A Power Series can be thought of as a function of 2 f{x)=>.a,(x—¢)"

n=0

where the domain of f is the set of all x for which the power series converges.

The constant ¢ always lies in the domain of /. and there are 3 possibilities for the domain:

1) A single point: : x series converges only at x =¢
. R R ) .
2) an interval ¢ . series converges absolutely for [x —c|<R
with radius R: ¢ diverges for Ix - cl >R
{enfire numberfine} x
c
R = Radius of convergence of the power series: 1) A single point: R =0
‘ 2)anintervall R=R
Jalx: R=w

3)all x: series converges absolutely for all x

The set of all x for which the series converges is called the interval of con%retgence.. .



Determining the Radius and Interval of Convergence

Although we may use any method to determine convergence of a power series, our main tool is the Ratio Test.
™ Examples: Find the radius of convergence for the given series:

#1. i3(x»—2)"

nady

- ratio fest: Him

a:m

Roodr)

Hm
ol 3(x-2)"

Hm

3(x 2)»&1

(x-2)(x-2)

o] ( % 2)”

kmixm ;

Hepty

[x—2j <1

]l -2l

l<x<3

center =2
R=1

Endpoint Convergence

( u e » © 1
#2. Z (z»m)f #3. z;‘nx
oo /h, Z(M)ﬂ (mﬂ\z - Rhs feSt
dest” fdm)ﬂi zor A )m.)!z”” (
NG 3 ) WS L nt N

.j%ﬁ X é’lm‘a‘)

e NI o )[M’Dﬂ‘.)‘")‘g
im ( W2 et E LAl
NIt x Fansiaar (et | /;;bgm; x(n—w)ﬁ ‘

v (a)|% <]
e \MM fog Lol
0 20 [xl< |
o lxzi £, l @_o)
X can bhe 4rgThiby ‘

Lonsrges Aorert ‘)f

——td L X L O

The Ratio Test is inconclusive if the limit = 1, so that means that we must test for convergence atx - R, and xx + R by hand

using others tests of convergence, Each endpoint may converge or diverge independently of the other, which
moans there are really 8 possible cases for the interval of convergence.

1) A single point:

2a)

- 2b)
2¢c)
R0}

3)allx:

X

.

~g

e

L
1

h ]
4

L
13

(e ]

1
]

{entive nuraber line)

4

series converges only at x = ¢

series converges for{(x—R, x+R)

series converges for [x—R, x+R)
series converges for (x—R, x+R]
series converges for[x—R, x+R)]

series converges for (—w0, «©)



Endpoint Convergence

Examples: Find the interval of convergence for the given series:

w, $5 gt Z:(wa) (x-+1)
wi M ol
a., (aho -‘af+-
ratio test  lim |- <1 converges Wt 7
B /M [(X'h) ) 2
al LT et
L1y #
nilx"| %) LX‘H)"
yo l"“”“"’"‘"’""
27 g ()
_ yr (/ 3 )
(D)lx| converges when: 7=
<1 so ~l<x<l } g < |
o
Now test each endpoint... K
when x = -1; —! & -%é <
S & __,1
O p Kb LT
is an alternating series, 3, £ R i
souse alternating series test: , ; @e i =
25
fing, =iz =0 =
Ty =73 A
W i Z 0" (34)"
converges for x =1 ne o ﬁ”‘

when x = 1: @3

A
s s _$1 ,ff“‘) 2

A B B g B

-2
is a p— Series with p =1, 'I) ¢ )>
so it diverges, and the n /3
power series diverges at x=1 ? é ) )‘7
n=2

interval of convergence =[-1,1)

Jne @M b‘y M#WW
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ned n
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Derivatives and Integrals of Power Series
Since a power series can be thought of as equivalent to a function, you can also take derivatives and integrals of power series,

ifthe function  f(x)= i:a,, (x-e) =ay+a,(x—c)+a(x—c) +.a,(x—c) +...
il

has a radius of convergence of R >0, then, onthe interval (¢— R, ¢+ R)
S s differentiable (and therefore continuous). Moreover, the derivative and antiderivative of | are:

F(x) wgm(ch)"”‘ =g +2a2(_x'~é}+3a3 (x=e) +..

i

ff(x)dx“c+f:aaww0+a (;\:wx:)-m,l(’mm'&)2 +a, (o)
oy ndl ° 2 4

The radius of convergence of the series obtained by differentiating or integrating a power series is the same
as that of the original power series. The inferval of convergsnce, however, may differ as a resu#t of behavior
at the endpoints,

; w it . Al
Example: Find the intervals of convergence of f(x), f’(x), and [f(x)dx for f(x)mz( 1) n(fl 1)
| ) g

First lot's just find the series for the derivative and integral

x

#7. f'(x) #8. [f(x)ax

) ! 7 5 b 3
N (= £ LT enben &) | B L= My
Wﬂg

e



Derivatives and Integrals of Power Series . "
Example: Find the intervals of convergence of f(x), f"(x), and [f (x)dx for f(x)= XM

1)»*1 (JE - l)rwl
n+l

(-1 (n41) |
sof (142) (x-1)"

| (1) (=)~ -1
(Mz) (-

1
fim| (-1

Ml(x~1)<1
Gecx<?

st x 0.,

3 o1y
4 n+i

‘2: (__l}nﬂ (_ l)m} R
prord nt

@ (])mi 5 ® 1
% n+l ot 2N |
positive, decreasing
intewral test;

f(x)= Z(

ratio test: hm

R"'NG

wafx [lnix+1l]
ammm;wm;zg

w0 diverges ot x =0
festx=2,,,

@ (m] )»M (2 -1 )wt]

§ n+i
&)

% n+l,

alternating series test

a la Aok
U we2  ned

convergesat x =2

f{x)= z:("“"f)( I)M(x 1)

w1

=S ety

n+l

fra-crg

same R, 5o
0 < x <2, recheck endpoints
test x=0..

5" 0-1y
SOy Y
200y
g(wi)dimrgesatxwﬂ

tost 2.,
g(wg)mi (2 - l)ﬁ
T Y

Y dvergesarx=2

interval of conyergence = (0.2)

interval of conmvergence=(0,2]

(n+1)(n+2)
same R, g0
0 < x < 2, recheck endpoints
test x =0...

- (Ml)m—l. (0 - i)wl
poe (n+l)(n+2)

Z )7 e

(n+1){(n+2)
(“!)(1)"“
Do)
5
= (n+1){(n «1-2)
- Z [y +3n+ 2
Timit comparison with iv;};

{p—series wi p =2, converges)
(75m1)
7 +3n+l
T
()

”Z
] e
messipr” 4 34§
finite, positive so seriey are " linked"
converges al x=2

lim
B

ost x=2.,,

2( ) )
(r+1){(n+2)
-y o

X(m»"f)(wz}

» l 30§

z(m)(}m}

alternating series test 2

o ¥
? 1 1
Wi Caraf(me3) (nal)(n+2)

CORVErpes of X =3

interval of convergence =10, 2]




Unit 7-10: Power Series Representation of Functions

Power Series Representation of a Function 3
~ ’ 3
hitps:/iwww.desmos.com/caiculator/88teggkpy? f
' I 3 2
y=—mna+bx+ex” +dx +.. ,
I-x
. /
. Playing around with the parameters, we end up with }ﬁ/
this for a 3rd degree power series approximation to »n N
the function: ’ Mﬁy’f
: ot S
_ /.
1 -
y-————~1+x+x +X 4. 5
1—x | /
‘ i N
i b H
This is only a perfect match at the centering value, x = 0, and the differsnce between the function and the power series
approximation {the error) gets larger the farther we are from the centering value in x.
Geometric Power Ser:es
it would be good if we i‘tad a procedure to come up with the term coefficients without having to try different values
experimentally. For some functions, we can do this by matching the given function to the sum of a geometric series:
Zar mw [r1<1
/-\ naly
If we have a function of the form f(x)mm this closely resembles the sum of 2 geometric series
Soifwematcha=1and r=x, then
f(x)r;ml;waim-" xii(x)” =140+ 2
| ok el
over the interval of convergence for this series.
Therefore, a function may be represented by a pawer series (over its interval of convergence), although
this representation only works at the x where the series is centered. Here, that would be x = 0.
If we wanted a power series to represent this function around x = -1, that would require a different series centered at 4,
That means in place of x we need (x+1). Here are the steps needed to convert from ceraterén§ at0to-1:
: 1
#1. Find a power series centered at x = -1 to represent ;—-—
1 1 11 Uﬁ/z)
=% 1-mel=1 1+l-x—1 2- (x-t—!) 1— (x+1)
) 2
Now we match to the form "1“:“““ fofind aand r am’%, rmfwg»}«
1{x+1Y
~~ Then we buiid the corresponcimg geometric series: Zar == Z““ e
’ ' . naf} =l 2 2

- %+%(x+})+%(xf3-)z +.-14%(x+1')3 o



Geometric Power Series
x+1
Z‘” %2[ 2 J

We need fo also find the interval of convergence. Since this is a geometric series...

[r]<1

m«:i
2

—1< -«xmt}m <}
2
~2<x+1<2
~3<x<]
(-3.9)
{We don't need to test endpoints because when a geometric series always diverges forr = 1)
Examples of converting functions to geometric form

We can sometimes also convert ofher function forms to geometric form to find corresponding geometric power series.

4
#2. f (x);.m centered at 0 #3. S x);“}; centered at 1
A 1
2~{~x} ]~x I-l+x
2 —t
]m(..f) l“l“{ﬂx)
-3 1
T {~x+1)
aw=2, rwm% aml, re=-x+l
@ ” 3 qr = 3 -z 1Y
ar” mgz(mg) | Zer =gl e-1]<1
APV - p¥ G- et
wgz(ml)"(,{] 2 N ex<2
= 2 (-2.2) =20 (02)
Using polynomial division to find power series
For some functions, we can use polynomial division to find the power series representation.
i ]
fln)= 2 2~% ¥ “g""a'" Previous example, this is represented by:
Xt o £ ; - .
2+x) 4 (- (—Jﬁ} DSV RN P I
~{4+2x) =] 2 2 4
-2%
~(2-+)
%
1)
(#+5°)



Operations with Power Series .
Some propetties related to operations on power series turn out to be helpful...

& & But operations of any kind may affect the
Let f(x)=Y ax" and g(x)=) bx interval of convergence. With these

’:" n=b properties, if using more than one function,

- o the interval of convergence is the

L f (kx) Zaﬂk * intersection of the individual intervals:
2 f(x)=3ar" ( ) [ w)

ned) %x +Z % Iiz*‘
3. f(x)xg(x)=(a, £5,)%" (=LY (’*2,2) so (-L1)

Heol)

An example where properties are helpful

#4. f(x)= 3x-l 1 First, this can be separated using Partial Fraction Expansion:

-1
3x~-1 A B
z t0 =
cer ermi a el xmfg"'" x+1

A(x+1)+B(x—1)=3x~1
(4+B)x+(4~B)=(3)x~1

Sx-1_ 1 + 2 ' {44»}3“3 A=Y, B=2
*-1 x-1 x+z A~ B ]
-3
B s e
1—x m(mx)

Z(“l)(*) + Z(Z)(“x)
;(“*3(")' + %;(2)(.“1)\ (=)
g(Z(wl)” wl)x"

Using derivatives and integrals to find power series representations of other form function

So far, we've been restricted to rational function forms, but what if we wanted a power series
representation for f(x)=In{x)?

S(x)=1n(x)?

Note that the derivative of this is:  f'(x)= 1 centered at1
X

Which we previous saw was represented by i(wl)" (x~1)" over (0,2)
)

Since f(x)=In{x)= jé dx {o establish C we use the x value where the series was centered

o fSCyeya e S

- ' (1)
mC»i-Z( 1y ..“._)..«x ! in(1)= €,+X( 1)( nM)

Pl

, (O)ONI
o 1),,4,, 0= C+Z( 1) At

erra | ec+oco

So |in(x)= }3( N G




Using derivatives and integrals to find power series rapresehta-tions of other form function
When we use this procedure, we should recheck the endpoints. Sometimes, even if they were divergent

before, now they may converge:

Z (=07 o £ x=t
lﬂ(x) ( ) s N ({n) 1)-"’“ ( )mi
n+1 LA Ul
%“ Riare Z{“ L n%
- { l)mi “1
(0 2} ”Ea( ) 7l ;,,;( 1} n+l
4 - e use alternating series test
Z(_;l’)". I)( 1! 1
' n+1 T s 22 £}
s 77 4]
Z(“"I)(l " «vi amigt,,
& LI
Wt n+d B+l
o . converges
D i positive, decreasing
P2 .
use integral test:
R o
‘gm&cwkﬂ[lnixﬂj}t
w00 diverges
Another example {we'll use the resulf on the next slide)
S{(x)=Mn{x+1) contered at0 interval of convargence
1 e R
PO =y SO =5 20
4 ym tio test:
so f(x)=In(x+1)=C WPIZ(WI) x" dx @ : i 1
. ._la ] ()| m
b n XM Lo 3 . . s =
mln(x%i)mc-+2(~1) i m a, mi(”_(_z) x&»ﬁ 1 mn_*_z] xmli (I)!x!‘:l
- 3 (0)"” ) q
e ln((0)+1) C+Z( ) n+l check endpoints: s
0=C g==lr
#41 Y3 £
so f{x)=In(x+1)= Z( ) (-1 CDEY e O e 1
”“ Z( L —e n+l Z( ) n+l Z( 1)n+1 bdn+l
Zw is positive, decreasing - integral test
,,_43?1""';
fmwd: hm[]n[x+l]] =00
1
diverges .
1: s0 interval of convergence:
XL .
. ~1,1]
sy L (-1
S-Sy
allernatmg series test:
Iimm%wmﬂ
wae g+
7 1

nv2

1
e < s COYVER S
n+l



You can sometimes find the sum of a convergent series by evaluating the function it represents
Example: Find the sum of the convergent series Z( i)"*’m

In the last example we found: In(x+1)m2(-‘i) mﬁ
Bk n

2V 55

1
N (E,:;?}

6l
S |
5y o(5)3)

(n»lwl)

(n-i-i)

41

1y ,
(ws)g(.;a)” g:l matches form Z( iy ('” )mm(xﬂj

Therefore, z( 1) e 7 (:H)m 31;:(1»4-1)

Honl)
4
G & |'1)
G)



Unit 7-11: Taylor and Maclaurin Polynomials and Series
Power Series can approximate a function over a region

https:/fwww.desmos.com/calenlator/vhyvotszdc

We've seen that we can build a power function to correspond to a given function that is perfect at the centering x value and
whose etror increases the further we are from that x;

4

3
i
}

y = %~ 01675 + 0.008335° - 0.0001984x"

if you include an infinite number of terms, the power series can actually perfectly match the given function if the coefficients are
set correctly. Here is sin(x) being approximated by a powar series with only

T B I/.va - " " ) g i g \ » o 5 o
e Fp ey N \ ¥ sin{x}

IOOIIE SO UF. AP S A SO MO SO S
YRETR TS T ol TR 13 151 171 190 21 231

Taylor/Maclaurin Polynomials and Series
We can try matching the function to a Geometric series to find the coefficients, but this doesn't work very often,
There is a different procedure we can use to find the coefficients that works with all fuhctions.

The resultis called a Taylor Series if we are using an infinite series and a Taylor Polynomial if we truncate
and only use some of the terms.

If we are centering at x = 0, then the results is also called a Maclaurin Series (or Polynomial).

ferdh

N LT V4N b NERNWLB . \\‘_ I AN b-;: ywsin(x)

5

:&ﬁ ;x:? xﬁ) x)}. . x)z xlfo x]'! ij’ x,z; xm

sin () = Bo() 3+ 5551 o1 in T 15 7 191 20 231

‘ This is called the 23rd-degree Taylor Polynomial Tor sin{x}
(It could aiso be called the 23rd-degree Maclaurin Polynomial, because it is centered at x = §)




Derivation of the Taylor Polynomial procedure

The way we form such a polynomial is to first require that the y-values of the original function, f(x}, and the polynomial
approximation function, P(x), match at the desired x-value, which we label ¢

~ P(e)=1(0)

To add terms in order to get a higher-degree polynomial approximation, we then also require one or more derivatives to
be equal between the original function and the polynomial function, Wherever we decide to stop, that polynomial is
catled the 'nth order polynomial approximation’, labeled 2,(c} where ¢ is the x-value we are approximating around.

For example, to create the fourth-egree approximating polynomial F,{x) we need:
Plc)=£(c)
P()=1(¢)
P'(c)=f"(c)
P"(c)=1"(¢)
PO(e)=1"(c)
‘This is easiest fo understand by looking at a specific example... )
Let's find a 3rd-order polynomial to approximate /' (x) =¢ around x=0,

We can first postulate a 3rd-degree polynomial with unknown coefficients:
B(x)=a,+a(x~0)+a,(x~ 0y’ +a, (x~0)°
B(x)=a,+ax+ax’ +ax’

We can then take 3 derivatives of both the original function and the pelynomial approximation:

original function polynomial approximation function
N f(x)=¢€" B(x)=a,+ax+ax’ +ax’

S(x)=¢€ B/ (x)=a, +2a,x+3ax’

I (x)=¢ B (x)=2a, +6ayx

fr(x)=¢ B (x)=6a,

Now we can replace all x values with the particular ¢ value {in this case 0) and set the original function and
polynomial function equal for each derivative (and y expressions). This will form a system of equations where the
values to solve for are the unknown coefficients:

original function polynomial approximation function
I (0) =g® =1 I‘},(ﬁ) = g ..*,.a‘{ﬂ) ity (0)2 ta, ({;)3 =4, a =1
f(0)=¢"=1 B(0)=a,+24,(0)+34,(0) =4 a =1
Fr(0)=¢"=1 B (0)=2a, +6a,(0)=24, 2a, =1
fr(@)=¢"=1 B (0)=6a, 6ay =1
system:
a, =1 solution to the system: ay,=1, a,=1, a,= %, a, = -é
%=1 11
2. =1 There is a pattern to these coefficients: (az = 3»5, a, mgi]
2 e | ) f 1
~ 6a, =1

Thatmeans f(x)=&"~B (x)wiﬂm%xz + %x’ (inthe vicinity of x=0)




Taylor and Maclaurin Polynomials
Defining this process more generally provides the definition of pth-degree

If f has n detivatives at ¢, then the polynomial
» r) ¢
@)= 1y r@)e-r LD (-cp + L ey +L Loy
is called the nth-degree Taylor polynomial forfar e
K ¢ =0, then the polynomial
P (x)= f(ﬂ)+f(0)x+

is called the nthudegree Macfauﬂn polynomial forratc.

L0 L0, S0,
3! n

(the full derivation of this more general definition is shown in our textbook if you are interested in seeing it)

Taylor and Maclaurin Series
Generalizing this procedure for an infinite number of terms gives the definition of a Taylor Series:

If a function f has derivatives of all orders at x == ¢, then the series
)
JEAIC .

zf (a)(:c cx)"mf(e)-i-f’(c)(x c}-&-f”( }(*r )+fm( )(x e) +

]

is called the Taylor Series for fatc. if ¢ = 0, then the series is called the Maciaurin Series for f

#1. Find the n=3 Taylor f, 4= L) +4 (@(5_9) _(,—e_f’[_:t) £x ,v)2,+. 'c‘__';%’j’) kasgB

polynomial for £(x)=+x
atc=4 /’, 3
£bd= Ty = X2 Waét) - 6Z)c) Z ¥ "‘L(Zx«v) -s» 2 )(’zx 7’) lnff@{x%}
YT ORRSR -
=2 + ¥l x9)Z + e
I:&)w \g)(.%/b ){1%/)' L# 2+ ) 6'€( ) ‘572/& )

" 3_ <72
£ [’()"" l'(m()“ 25%

L4

0
—e,L) nﬁ”‘fwk o ,?;F =) x"

#2. Find the nth Maclaurin (¢== N #'(; Jx ¢
polynomial for f (¥J=¢" ) P (x) = £4o)
— Lty ® WA
0,09 1|+ 1\ <+ 213 -t

1C(>4): 6X, =2

P, £ —

ﬁ“[x):»et«%l E'Zb)?b " Pl = %D %T {
e

[”2 >~«=?‘ f% =



#5. Findthe n=d Taylor ) [x) = (0 +7' D=0 +€ ) (" HLL [')z’»w f—p ){) ()Y

polynomial for f(x)=Inx
ate=1 #/n ,fﬂ\ =D ()t( o + l()('ﬁ) + "(?('f) s Q& )5 + L?{&M@w

N #({\/) >/€A)(
Clo==xt  #O= b= (-~ 30T ¥ 3007 — 3 Onf |
- =t , '

th= =58

e = ¢ BT
Dy 45 1= ¢

# Find the Maclaurin Series for the function f(x)=sinx
First, write out the function, and a few derivatives, and solving for the values atx=c (¢ = 0 for Maclaurin)..,

f(x)=sinx  £(0)=0
F{x)=cosx  f'{0)=1
f(x)=—sinx f(0)=0
fo(x)==cosx f"(0)=-1
FO(x)=sinz  fO0)=0
fO(x)=cosx  fO(0)=1
Next, use the definition of Taylor Series to build some terms of the series...
L ey = p @47 OG-0+ ) xmef + LD ey . A { L@ oy s,

Hely

m{)+lﬁxu€})+§¥(xw) +-§}!~(xwﬁ) +;~E(xw0)- »tegg{x»{}} +.
Then, aliminate any zero terms, and write the term number under sach term...
wl(.xw(})&» (x 0) +-— (x»»()) *..

n=0 nml nmz
Now we need to figure out an expression for the nth term...

(m‘l) A 2nek
(ZnH)*( %)
Finally write out the series: - ( s o e 2
y sinxs Z (2}34«1}* 3ix3+ Xt




Taylor and Maclaunn Series Exampies
Find the Taylor Series for the fumtlon F{x) ““‘Tg centerad at ¢ = 2,

First, write out the function. and a few detivatives. and solving for the values at x = ¢ {c = 0 for Maclaurin}...

e F@ertsma
J@)= (i) ()= (1= m r@=t
P2 =2 s e

P ()= 2(3) (=3 () =601 = i}#_ r@)=6

SR =64 () =28 = s SO0) =24

)

Next, use the definition of Taylor Series to build some terms of the series,..

$ 20 ”(x o' = £+ F () (- c)J"( ey + 240D ()(x o e L “(x e

ol
wwz(‘xez}%-;(xwz) ~i~~§!-(xw2) +~j;;*(x -2) +
Then, eliminate any zero terms, and write the term number under each term and find an expression for the nth term...
= -] +(x-—2)+~—«(x -2y 5 { —2y + (x 2+
n =) n=l = ne=3 ne=4

CUT ooy m -2y

Finally write out the series: lemfj(-ml)’“‘(x-z}” = (= 2) (2= 2) +(x~2) +...
. L K ly

We could also have used our Geometric Series procedure instead...

i»%»;aig; centered at ¢ =2, i—)(xwz) gar m_g ~)(=x+2)"

i - =S (E-2)f
1 : % v

- (x-2)-2 =2 (D1 (x-2)°
1

) =2 (-2

1 ...which maiches what we got with the Taylor procedure:
~(1-(-x+2))

N L= )™ (-2’

1—(~x+2) 1-r

a=-1, r=-—x+2



Unit 7-12: Binomial Series, Using lists of Power Series

Binomial Series
If the function we are representing is of the form; 7 (x)=(1+x)'
then the series is called a Binomial ¢ )

Example: Find the Maclaurin Series to represent 7(x)={1+x)"

/(@) =(1+x)" F(0)=1
f(x)=k(ex)" | S0 =%k
fr(x)=k(k-1)(1+x)"" F(0)=k(k-1)

S =kE-DE-2)1+x)" f(0) =k (k-1)(k-2)

o S e " v *{e}, 2 Je), e, Je ,
z%l(xma) #f{cz}-ﬂwf’(a}(xwaf}w%(mw:r) +%§—-—-}»(x~a) »&w.wmmfgjf ){_xmc}” S

sl

mri«i»ﬂ‘;:‘(xw{}}+m£§§£x -0) + mﬁ "’"’;}Sk =2) (x=0) ...

. 1+ kx+ k(k&;i) 2+ k(kmigfkmz)x*’"

which can be shown to have an interval of convergence of (-1, 1)

With more complicated functions, using the Taylor procedure can be difficult...
Example: Find the power series for 7 (x)=sin{x*)
Taking derivatives... f (x)=sin(x*)
£(0)=oos(<*)(2)
F*(x)=cos(x*)(2)+(2x)(-sin(x*)(2x))

..we can see that the derivatives quickly get very complicated, and are not of the same form, so it will not be
possible in a case like this to use the definition of the Taylor Series to find the series,

In cases like this, we can employ a list of pre-calculated power series for elementary functions.
/



'I’owar Series for Elementary Funztiu;zs } B T

‘ P Functwn | , . _ 3
ix 1}»&«@ 2}*-'& 133%@“3)‘( @,{ml}a&w}u,,_’r o

ke
li

».li mzmw»x* x3+x" x5+~“ +(-1}W+

‘..Zax:&(xmzj &21}2 &”1)3 {142“;1}“‘
x a8 x‘ x’ =

“ ‘c“l%:rk

| sinx = x xz xs x%i»
| P $¥ " 9’
o - ;m«:mgf..
LA 2

) wﬁanxwxw*g*“g“ %9 -

‘ B dedd  1e3e57 o

arcsmxmx%g 34»3 T 5%3 e ‘?*'“”%(2%’}3(2::*?&)*

R R e m:z Bk~ 1)(k ‘2}?:3 k{k o 1}{36 23(?6 3};’5’3
B AT U e et oy

i ko ’ '.05/, ¥
B %mmmuxW$§MWﬂww%gwft . e .

Using the basic list to find power series
#1. Find the power series for f(x)= cos(v@)

) & . ™
msxwlwfw*fwmfw+m ( 1) x*

2T TR TR 7 T

w"’“ai'*"éz‘*”ﬁ!“*” “*\"Q?..‘*ﬁf“ o+ - | memorize thesel:

C'orzvergencg

Co<x<2 |
‘ ::"-'1%%'2,3:{35_ 1

. 0<xs3 B

~0 L x < |

L mw<x<on

-0 x <o

~T<xs1

 ~Isxsl

~V S TS A

Just substitute the expression for ii‘m argument in place of the x...

R |
Imem?of




Using the basic list to find power series

#2. Find the power series for f(x)=¢" arctanx

You can also combine basic list power series using arithmetic operation such as multiplication, ..

b k3 s : y s
& @ LA X b Note: you cannot just multiply the expressions
a1 3y for the nth term because of the term combination
LR interactions,
AFCEAN X 552 00 e s o s s s
3 5 7
A F 3 ] =i
Farctany =| 14x +2m g g x«»f»va-fem&w-...}
2 3 3 § 7 J
3’3 5 ¥ x ;‘4 3‘? ,€2 [ 3 3 ¥ . xa xs xS .X? ,
=1 X e e e ] X e il Bt Sttt JUNS BRSS! IEERCTE NP
R - B 2L 03 5 7 03 5 7 )
3 3 ? 4 8 % 3 3 2 b 4 % 3 i
X X X 3 X X X X X X X 4 b d X X
52 s e e st < 3 e s e e = e s . o o, s e, < e o e . v, s o |
M A S R A T A TI TR T
2 - 3,
—xaapdy? 3x‘*+~2~x5+ixéuix’wﬁxs‘uixgmwxmﬁ"
6 9 30 5 70 210 14 42
Example: Find the power series for J(x)=tanx
Yol can use division to find a series for tanx... smxww««gx@ 4«%@%«."
. Loa 1 4
08X 2] X o B e,
f 2
| I s
i R X gy g
mxng;iw g 1%{) .
ke luw,”_uxy}’ _-E.n.....mfw.x &
] 24 :
14 2
XA X o
e 3 15
using polynomial division... ’ > 1




Using the basic list to find power serles
Find the power series for f(x)=sin?x

2x 1 1 -
You can use identities to convert things mto forms in the basic list  sin”x= 1-eos2x ==—¢08(2x)

sin* =~ Zeos(20)= 3~ S 2L

(2 )Zn +k

(2n +1)i

i
#3. Use & power series to approximate [ dx
U]

First expand out terms using the basic list form:

1

. i
Ko St p iyt oty g
& e=lrx+ xz-}-ﬁx o +120x

+~§(--ﬂ*}3+§;(-x’)‘

24
¥ ’w1+(ux2-)+ (=)

sy I Va1, 1 s
= ] x“+2x ¢ o

Then intagrate term by term:

i 1y ;
PRV I £ dadet 1o, 1 s 1
k d’xmf[wma +2x 6:: -1-24x 5o

! c? 1 o ! x’«i««w%mx'?
EREE L . 236

S 4-]
1320 b

P -'4".‘..)dx

9

2 2 2

We can just work with the nth term here because

we are just multiplying evary term by the same
thing.

1 (8
+~i~2-5(»~xz) Fo

%[(L)méﬂ)”»f«fgafwggei m(} 0"+ [ O30 50 - L O 4@ -0+ ]

'l }
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Unit 7-13: Lagrange Error for Taylor Polynomials

Remember Alternating Series Error?

If you go far enough out in the terms (and the alternating series is converging)

the actual sum...you get closer to the actual sum the more terms you include i
between the actual sum and your approximation is called the Remainder and

your approximation:

remainder, RN =88y foranN term partial sum

The following theorem is helpful for approximating an alternating series sum:

you can get as close as you wish to
n the partial sum. The difference
represents how much error there is in

If a convergent alternating series satisfies the condition @,,, < a,, then the absolute value of the
remainder R, involved in approximating the sum § by Sy Is less than or equal to the first neglected term:

|S =Sy =|Ry| S @y, (the value of the first neglected term)

Remainder/Error for a Taylor Polynomial

~The error (or remainder) between a Taylor Polynomial and the function it reprasents is similar in concept:

Alternating Series
N
e )
da,=a+a+a +ajitag.=8
H

wwl
A Gy A bty xS,

jditernating Series Renmzm&rﬁ Slan)
|Atternating Sertes Remainder < ist neglected term|

o

A

BEIC

- wh

o

i

Taylor Polynomial

Remainder/Error depends upon 2 things:

+ How many terms are included (degree)

» The x-value you are evaluating the
polynomial and function at, and how far
away this x-value is from the centering
value,

Like the Alternating Series Remaindsr, the Taylor Polynornial Rermainder is stilt
determined by the first neglected term, but now the expression for calculating
this depends upon that term's derivative and the particular x-value you plug in,
and it is called the Lagrange Remainder:

|Lagrange Remainder|s

f(”"'l)(z) . Nl
@ &9

Where V(2 is the maximum value of the derivative in the
interval of interest, between the centering x-value and the x-vaiue
where you are evaluating the funclion.




Examples to help us see how this works In different cases...

#1. For the series Z( ])"M !

=]

(a) Approximate the sum of the series by using the first 6 terms.
(b) Find the upper bound for the remainder for the approximation in part a,

{c) Find upper and lower bounds for the actual sum of the series,

, 2 e
G + -4 e -h +E -h = | s s

D) leren| < | i‘*‘*"‘mﬁﬂm&@f{ :[ :*S 1491187 =2 0000 91

A

| WL
le) ?;‘L\l —l‘, < S « vo1

OAANPleo3 « S < 0,63214285F

#2. Forthe series é(—l) m

(a) Approximate the sum of the series with an error of less than 0.001.
(b) Which memorized Power Series matches this series form?

Use the function for the matching series to find the actual vaiue of the given series,
L L -

R o o) ‘ereai37) {:::Z;:‘t? — <£o,00)
- P Muncate hore
Gx;%o =0, 50277 \ |
(.5) ‘,__a_;"tltjé)o): 2_ (,,)"_ 7%"' wedehal (€ X=)

R N o

(7. 2—a -4



#3. (a)Estimate ¢* using a Maclaurin polynomial of degree 10 for ¢*

(b) Use the Lagrange form of the remainder (error) to find the upper bound of
the error using this partial sum.

(c) What is the actual error | £ (x)-P(x)|?
Y . X — + ﬁ" X__;j - o é‘/_@ ~ o
A) &%= Lix SrE Y +

s o
iy e 2" 7. 0 l
ErlrzaB G 2y = 2 E o| 75801101
(&) lemwr] <

{:& ) I-é(x) "I,ZO&)‘ RN

<5
| e (mamane)| = (3599507

DeOOOOé13 ?

—

#4. It sO(x)=700sin(x) andif x=0.7 is in the convergence interval for the power series of f
centered at x =0, find an upper limit for the error when the fourth-degree Taylor polynomial

is used to approximate 7(0.7 5
ppro f£(0.7) X =0,3 _é(y)()() =Foos hx W\
C e

I -&fYD:-[ < / @(N'ﬁ)(?) (X'C>~+'

(N'H)g N =Y e ;,-1;’5'” A X
Z
'e,('o,-‘ ot I‘Pl:)(oﬁ)(a?-o)r' 2=OF
g

. /?"ff”‘_(f’)[a,q;,a)’”{ = O, L3(796 389
b st . ..

#5. 1f /O (%) isa positive, decreasing function, find the error bound when a 5th degree
Taylor polynomial centered at x =4 is used to approximate f(&ta. 1)

(Assume the series converges for x=4.1) L% 4
o | €M% | x=Y\) L
[eaer| 2 15t ) e=N SRR, =Y
| NES , lavgert hore, $= T

lewor| & i«‘f%%‘;‘) faa-if’ ‘




#6. The Taylor series for In (x) , centeredat x=1 is i(-—l}’“’——%ﬁw

~ Let / be the function given by the sum of the first three nonzero terms of this series.

The maximum value of |in(x)~ f(x)| for 03<x<17 is:

{A) 0.030 e First, try Lagrange error.
B) 0.039 o Next, try Alternating Series Error
© Q-»}%ﬁ e Finally, can we just compute the actual error over this x interval?
) 0.153 L0 =y
(E) 0529 ) =
fw _ ' | < .@[04"9&») [ a v gjfélxé > ;:l(x) ..f -2
Lrgtame (| = =
o Yoy e T):-,F N=3 | {;,Hg(xi - zx"}‘ﬁ
£0403) / [u)(); %X 1=
= (03
=1 (+3) ¢ £
_¢
2 [ e (o7)'| = i 1ovt KA
g! Cnm"h‘?"e of ) \\ & Way w+)<-~a;
ChoiceS o 203

g

/(0(%> = (x-1) —
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