AP Calc BC — Lesson Notes — Unit 7: Infinite Series

Unit 7 is mainly about infinite series

It isn't intuitive, but sometimes you can represent a function with an infinite series: f(x) =sinx
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Why represent functions as series?

e Sometimes, it is easier to work with the series (especially if using only a few terms) as an
approximation to the actual function.

e Series are also sometimes useful in proofs in more advanced mathematics. One example of a
theorem which can be proved using infinite series is Euler's Formula:

e’ =cos@+isin@

This formula is used frequently in physics and engineering to represent information with two
orthogonal components as a single entity called a 'phasor’.

In AP Calculus BC, we are going to learn the definitions and procedures for finding and analyzing

infinite series, but know that you will need these later if you take advanced science or engineering
courses in college.



Unit 7-1: Sequences

Sequences are functions with integers as the domain

A sequence is just a list of numbers in a particular order, but it formally defined as a function whose domain is the set of
positive integers (usually starting at n=1, although sometimes starting at n=0):

n: 1 Z 3 4 8l
sequence: 5 10 17 26 37

For some sequences, it is possible to define the pattern by writing the output as a function of the value of n:

f(n) =aq,= (n + 1)2 +1 (this is the expression for the nth term of the above sequence)
n is called the index which locates the position of a particular number in the sequence

a, is the expression defining the n™ term of the sequence

Given an expression for the nth term, you may be asked to write out some terms of the sequence:
n
n+l

#1. Write out the first 4 terms of the sequence defined by a, =(-1)""

Limit of a sequence

In calculus, we are mainly concerned with whether or not a sequence approaches a limiting value as n approaches infinity.
Some sequences approach a single numerical value and these are said to converge. Other sequences go off to positive or
negative infinity or oscillate between values and these are said to diverge.
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lima, = lima, =3 lima, = tima, = DN
converges to a limit of 5 converges to a limit of 3 diverges diverges

If a sequence converges, there are various methods we may need to employ to determine the limit of the sequence.

If you are allowed to use a calculator, you can enter the expression for a, in as a function and use table features
to quickly see if a sequence converges or diverges:

3n
41

a,= (_])n-1

...suggests this sequence is converging to 0

But to know for sure we need to find the limit analytically.



Finding the limit of a sequence analytically

an:(—l}"] 3n

n+1

We first try evaluating the limit. After graphing, we can see that the sequence is converging to a number and
the sign is oscillating, but the value around which it is converting is determined by: 3

n+1

We try evaluating this limit as n approaches infinity, initially by plugging in a large value:

. 3n o
lim ——=—
naw gt 4] [e's]

This is an indeterminant form, which allows us to use L'Hopital's Rule:

T i i
mep? 41 ne2n oo

So we verify that this sequence does indeed converge specifically to zero.
Two more examples:
Does the sequence defined by the expression for the general term converge, and if so, to what value?

5n° +3n n!

¥ e T

Properties of Limits of Sequences

A number of properties and theorems for functions and limits also apply to limits of sequences:

Letlima, =L and limb, =K

n—rm n—pm

1) Scalar multiple : lim(ca,)=cL

-y
2) Sum or difference: lim(a, +b,)=L+K
3) Product : lim(a,b,)=LK

) . [a L
4) Quotient : lim [b"J e (forb,+#0,K #0)
A number of properties and theorems for functions and limits also apply to limits of sequences:

5) Absolute Value: If Iim|a"‘ =0 then lima, =0 6) Squeeze Theorem: If lim a, = L = lim ¢, and there exists an integer N
e e ey prarens
such that @, <5, <¢, forallr> N, then limb, = L.
perey

.....
e "

“dy

(If a series is oscillating around 4 h
zero, then the sequence (If you can't evaluate the limit of the sequence directly but
converges to zero) can find functions which bound the sequence above and
below which both approach the same value, then the
original sequence converges to this value - rarely used)



Monotonic and Bounded Sequences
If we just want to know if a sequence converges but do not necessarily need the limiting value we can
use the following definitions and theorem:

A sequence a, is monotonic when its terms are nondecreasing: @, <a,<a;<...a,=<...

or nonincreasing: a, 2 a,=a,=..a, =...

A sequence 4, is bounded above when there is a real number M such that a, < M for all n.
The number M is called an upper bound of the sequence.

A sequence 4, is bounded below when there is a real number N such that ~ <gq, for all n.
The number N is called a lower bound of the sequence.

A sequence 4, is bounded when it is bounded above and bounded below.

If a sequence a, is bounded and monotonic, then it converges.

This example shows how these definitions are used...
3n
a =

Determine whether the sequence is monotonic and whether it is bounded: a, T
I

Monotonic? Use the derivative to determine where increasing/decreasing:

f(n)= (g+2p3-dnfty 3 J'(n)=00r DNE: nowhere and testing n=0, f’(0)> 0 (increasing)

3n
f("):m (n+ 2)1 (n+2)i /

-0

oo

increasing everywhere
.50 the sequence is monotonic (specifically, nondecreasing)

3(1) =1 lower bound

4

Bounded? Since it is increasing, the lower bound value would be at n = 1: = M+2 =
The upper bound would be as n approaches infinity: a,=lim 3”2 s
n )n)n+ m

. 3
by L'Hopital : =lim—=3 upper bound

Hpon ]

.50 the sequence is bounded

Therefore the sequence converges.

Finding an expression for the n' term
In order to analytically determine convergence, we must have an expression for the n" term, and some
problems just directly ask us to find this for a given sequence.

First, you can determine if the sequence is arithmelic or geometric which each have defined formulas:
a,=a,+(n-1)d
a,=10+(n—1)(-3)=10-3n+3=13-3n

arithmetic: 10 7 4 1 =2

A S .
3 -3 -3 -3 thecommon difference, d

geometric: 100 50 25 % ?

u L
* |2 *VZ *% *% the common ratio, r a,=a(r)" |
1

If the signs alternate, include multiplying by (—=1)" or (—1)""'I

= 1 n—1
—100 50 =25 B 2 a,=(-1) JGO[EJ
2 4



Finding an expression for the n'" term
You can also try writing the values of n below each term, then try different operations on n:

sequence : @ @ @ 37 +— these...
1 2 3 4 5

n:

wls 1 @ @ @ @_._.areone larger than these

a,=(n+1)" +1

More examples...

#4. List the first 4 terms of the sequence: #5. Find an expression for the nth term:
a,=1-(0.2)" {1,-3,3 -i._.}
3’9" 27

[calculator function seq) under list, OPS]

#7. Determine if the sequence is

#6. Determine if the sequence converges
; g monotonic, bounded, and if it converges:

and if so find the limiting value;

3+5n° . L
— n. n-+1

aﬂ‘

2
Hn+n an



Unit 7-2: Series and Convergence

Series vs. Sequences

A sequence is a set of numbers in a particular order but a series is the summation of the terms of a sequence. We typically
use sigma notation along with the expression for the nth term of the series. Comparing a sequence and corresponding series:

_ 1 1 1 1
Sequence: g, =— - - — —
2" 2 4 8 16
_ = 1 1 1 1 1
Series: S = A
=2 2 4 8 16

Finite Series: If there are a fixed number of terms in the series, we say the series is a finite series:

1] 1 1 1 1 15
e e e o -
Z 2 4 8 16 16 Finite series always converge to a computed sum value.

Infinite Series: If there are an infinite number of terms, we say the series is an infinite series:

I B | 1 1 1 Infinite series may or may not converge to a sum value
Zz—ﬂ=5 + 1 + 3 + 16 =77 (much of this unit is about how to determine if infinite
= series converge and if so to what sum).

Convergence of Series vs. Sequences

We say a sequence converges if the values of the terms approach a numerical value as n approaches
infinity...
1

1 1 1
Sequence: 4,=_, = = o =
4 2 2 4 8 16
...and our main way to determine convergence is to compute the limit of the expression for the nth term as n approaches

infinity:
1

; 1
lim 4—“2" =—=0 . so this sequence converges to a value of 0.
n—px o0

We say a series converges if the sum of the terms approaches a numerical value as n approaches infinity.

= 1 1 1 1 1
—=—+—4+ -+ — .=

=— +
o2 4 8 16

n=|

NOTE: The value to which the series converges is different than the value to which the sequence converges.

One way to determine convergence of a series is to consider the sequence of partial sums of a series.
A partial sum is the sum of the terms up to a specified value of n:

Partial sums: g - To determine if a series converges, instead of taking the

1
% limit of the expression for the nth term, we take the limit of

[ LN an expression for the nth partial sum as n increases...
2 4 4

s g X lim 22— =1

# 2 4 & R n—sen  F

P L S I . 5 i A

S, =§+Z+§+E=E ...since this limit approaches the number 1, this infinite
- . ;o series converges and its sumis 1.

S,=-+—+l+—-—+ =
2 4 8 16 A8 27



Convergence of Series vs. Sequences

This particular series has an interesting geometrical interpretation as well...

=1 1 1 1 1
— =+ —+ — 4+ — .=7
,,Z..“Z" 2 4 8 16 ...each term is a fraction which adds up to the total area of a 1 x 1 square:
1
Slzi » 1
1.1 _3 —
S,=—t—==
12 4 4 I l
|
S,=l+i+L=Z = RN 8
2 48 8 1 nEe
Sg:l+l+l+L:E 1 2
2 4 8 16 16
Sn:l.+.!..+.l_+-l_.+ +-]_=2"—] l
2 4 8 16 2" 27 4
e v
n—scn 2"’ o4 2

Example: Determine if the series converges and if so, to what sum.

3

=1

i1=1+l+l+l

n=l

The nth partial sum would be: S =n

So we can determine convergence using the limit: lil;g(!?) =0
=0

So this series diverges.

Determining convergence of infinite series when it is difficult to find S,, Properties
In the examples we've seen so far, we have been able to determine convergence by writing out some terms of the series, and
then finding a formula for the nth partial sum, then taking the limit of this partial sum expression as n approaches infinity.
But sometimes it is difficult to determine a formula for the nth partial sum, so we need to resort to other techniques to
determine convergence and/or to find the sum:

+ Recognizing Known Series: Sometimes, we can recognize that a given series is a particular known type which

has conditions which determine whether or not it converges and what sum it converges to.

« Theorems and Tests: Sometimes, we can employ certain theorems or 'tests’ to determine whether a series

converges or diverges

For series which converge, the following properties also apply:

Let >4, and 25 be convergent series, and let A, B, and ¢ be real numbers.
a=l w=]

If >a,=A and z]b,, =B  then the following series converge to the indicated sums:

i
ica" =cA

n=l

S(a,+b,)=A%B
A=l




Geometric Series
One frequently encountered infinite series pattern we can recognize is the Geometric Series:

a
Yar"=a+ar+ar’ +ar*+..+ar' +... (fora+0)
=0

We were introduced to this back in honors algebra 2, but can now prove some things about geometric series.
The expression for the nth partial sum would be: S, =a+ar+ar’ +ar’ +...+ar™”’
if we multiply this by r and then subtract this result from S;: S, =a+ar+ar’ +ar’ +....+ar™

-rS,= ar+ar’+ar’+.. . +ar" +ar”

(1-r)S,=a-ar"
(1-r)8,= a(l —r")
s =Ii(1 ~r")

=
a

Taking the limit: ]il:gl (l —r”] since we are subtracting the term »" as n increases, this will go to zero only if |r|<1

—r

Therefore, a geometric series will converge if |r| <1 and will converge to the sum

Examples: Determine if the series converges and if so to what sum.

#1. 23[%] #2. 33(5) #3. 23{1.1}"

. 1y 3 _ 1
r=1.1 diverges

1 . -
b= i converges r= 3 converges

O.]_r- B 3 3 . a — 4 = 4 =]
' 3

You can use geometric series to investigate repeating decimals...

Example: Write the repeating decimal as a geometric series and as a ratio of two integers: 036

#4. 036=10.36363636363636...
= 0.36+0.0036 + 0.000036 + 0.00000036 + __
= Zo.:us(iJ
£ 100

a=036
r= ﬁ converges

a 036 036 100(0.36) 36
er 199 99 99
100 100




The nth-term test for divergence

If we can't find an expression for the nth partial sum, and the series isn't geometric, we can at least
determine if the series diverges using the following theorem and test.

o

Assume that > a,=limS, =L (even though we can't determine the Sy)

n-3om
n=1

It would be true that S, =S, , +a, This theorem isn't super useful directly:
If we take L=1imS§, If Zu" converges, then lima, =0

n—pa n=l ey

=lim(S, ,+a,) But remember from geometry that you can either negate
1 ; the sides of a statement or invert them to form the
=limS§ _, +lima . i

noa " pw inverse, converse, and contrapositive? One of these, the

Weknow LmS =7 contrapositive is always true if the statement is true, so
nam the contrapositive of this theorem is also always true:
but since n is approaching infinity it is also true that 1imS, , =1
Fi—piy -

so it must be true that L =L + i!r}l;])du If lim a,+ 0’ then Zan diverges.
which implies that the sequence {a ! converges to zero -
Therefore: | If Za converges, then lima, =0 This is called the 'nth-term test for Divergence'

n=l L

This is a theorem
The contrapositive of a true statement is always true, but the inverse 'nth-term test for Divergence'
or converse are not necessarily true or false.
, . If lima, #0, then » a diverges.

We can therefore only use this test to demonstrate that a series diverges. v " ; L 8

1) Compute the limit of the sequence for the series ’lfl_lyTl a,

2) If the limit is non-zero: you can state that the infinite series diverges.

If the limit is zero, you can make no conclusions: the infinite series might converge or might not converge (and
if it does converge, you do not know that sum to which it converges).

Examples

Determine if the series converges and if so to what sum.

= n+1 © 1
#5. ;2:1—1 #6. ) —




Examples

Determine if the series converges and if so to what sum.

5 25 125 - n
Y. =24+ #8. lﬂ( ]
2 8 32 Z 2n+5
Determine if the series converges Find the values of x for which the
and if so to what sum. series converges, and find the sum
@ of the series for those values of x.

n

#9, Z;—;—an 1o, i;c_
n=1



Unit 7-3: The Integral Test and p-series
The Integral Test

Much of this unit is about whether or not a series converges and if so to what sum. We've seen that sometimes we can
recognize a given series as a particular form for which there are specific rules (like telescoping or geometric series) and we
can sometimes use theorems (like the n-th term test) for at least determining convergence. In this section, we expand our
list of recognizable series and theorems about convergence with The Integral Test:

If / is positive, continuous, and decreasing for x>1 and a, =f(r.-) , then

ia" and Tf(x) dx

either both converge or both diverge.

This theorem applies when you have a series whose terms are always positive and always decreasing...in this case, we can
use an integral of the &, expressed as a function and if the integral converges then the series converges.

Important note: If the integral and series converge, the series does not (necessarily) converge to the same
value as the integral. We are just testing to see if the series converges at all.

The Integral Test - proof

Much of this unit is about whether or not a series converges and if so to what sum. We've seen that sometimes we can
recognize a given series as a particular form for which there are specific rules (like telescoping or geometric series) and we

can sometimes use theorems (like the n-th term test) for at least determining convergence. In this section, we expand our
list of recognizable series and theorems about convergence with The Integral Test:

\
If you have a function decreasing from x = 1 onward and =
represent the area between x =1 and x = n, we could set the inscribed area = Z I
rectangle height using the RHS, but would mean starting at /=2 n=2
and we would obtain the inscribed area:

Using the LHS for rectangle height we would start at /= 1 and et
obtain the circumscribed area: circumscribed area ="y f (i)
el

The exact area is between these two values: if{:‘} < Tf{xjdx 5 if{:‘)
=) | wal

Using the nth partial sum: s, = £ (1)+ £(2)+ £(3)+...+ f(n)

S

el

the previous area statement can be willten as: 5, - /(1) [/ (x) dv <
1
Assuming that the integral converges to a sum which we will call L, then: s, - f(1)< £

S, <L+ f(1)
Therefore {a, } is bounded and monotonic, and by previous theorem it therefore converges, so » a, converges.



Examples using the Integral Test
Use the Integral Test to determine if the series converges or diverges:

o

., DY~

el

#2. 3!

f=1



The series doesn't have to start at n=1

Use the Integral Test to determine if the series converges or diverges:

#3. %

~p* 41

p-Series and Harmonic Series

Here are some more recognizable forms of infinite series: p-Series: ZF T +§; +3—,,+ 47+
=l
" - —_— = 1 1 1 1
The Harmonic Series": Z_ =l+—t—t—+...
PERL 2 3 4

"The Harmonic Series" is called that because it relates to music theory. If a string (or column of air in a wind or brass
instrument) is vibrating, it can vibrate in different modes:

e |
S —————— |
2 e e
i Fomar—teptie |
3 - = it
: e ="
4 = |
: .
5 =
: ‘ | | l : pitch (frequency)

this mix of frequencies gives the instrument its timbre
(unigue sound guality)



Convergence of p-Series

There is a theorem for determining convergence of p-series:

The p-series )" L Lot

1
Lagr 1P QP 3P

=—+—+—+—+... converges for p>1, and diverges for 0< p<1.

Proof: Using the Integral Test, f{x}=L and

X7

Il

B —p+l
| 2 ]]+l—|

xpdx=Tx"dx

1
_xprl :|«:
[ -p+1 1

[im 2 ][ ("
| b2 —p+1 -p+l

If the exponent is positive, —p+1>0, then 5 7" will increase without bound and the integral and series diverge.

The integral (and series) will only converge if the exponent is negative, because this moves the 5 7*' term to the bottom of
the fraction. Therefore, the p-series will converge when —p+1<0

which is when p>1

Examples using the convergence of p-series theorem

Determine if the series converges or diverges:




More examples

Determine if the series converges or diverges:

. . )
#6 Enlnn #7 Zﬁ #8 Z :

=1

In+l




2, |
#9. Determine if the series converges or diverges using both the integral test and the p-series theorem: z;,n: 1

#10. Find the values of p for which the series converges: ZH(I +n )ﬂ

n=



Unit 7-4: Comparison of Series

Comparison Tests

We've seen a number of ways to check whether a series converges or diverges which involve either recognizing the
form of the series or performing some calculation using the series itself or a function representing the series. But
some series are difficult to analyze in this way.

So instead, we sometimes determine if a series converges or diverges by comparing it in some way to another series

for which it is easier to determine divergence/converge. There are called comparison tests and in this section we will
example two of these:

The Direct Comparison Test: Used when we know that one term is always higher than another, term by term.

The Limit Comparison Test: Used when the ratio of two series is always positive as n approaches infinity
(meaning that, eventually for large n, one series converges to a higher value
than another, even though we can't say every term in one series is higher
than the corresponding term in the other series).

The Direct Comparison Test

Here is the formal statement: Let O0<a,<b, forall n
=l

5
If zb,, converges, then Zaﬂ converges.
n=|

If Za,, diverges. then Zb,, diverges.

i
n=1 n=1

Instead of a proof, let's understand what this is saying intuitively. If you have two series, and comparing each term,
term-by-term, one series (the b series) terms are always higher than the a series terms, then one of two things can

happen: °
L]

b series values - °

L ] L] z
= ° b series values . . ®
° L] * i ° L ] o L] )
a series values ¢ ™ . : s F a series values
n "

1 2 3 4 5 3] T 1 2 3 4 5 6 7

If the b series is converging to a value, it 'squeezes’
the a between this value and zero, so a must also be
converging (although not to any particular value)

If the a series diverges, then it 'pushes' the b values
up too, so the b series must also diverge

The way we use direct comparison is for our given series, we need to identify a different series which we can show
is always above or below our series (term by term) but for which it is easier to determine convergence.

Example: Determine if the following series converges or diverges: z 1

n=1 2 = 3"

=1
This series is similar in form to Z_» and we can write out a few terms of each series...

si=1

n 1 2 3 4
SR 1 1 1 1 S -
3y 5 11 » B ;2+3'- —§“~
& 1 1 1 1 = ] =
§3~ 3 9 21 8l ZJ_ i Z‘b
..to convince ourselves that 0<a, <b,
R = 1Y 1 = 1
Our new series is a geometric series i ZI(Q with r =2 and since |,.| <1 235 comverges.
=l n=l R=

Since this series is always higher than our original series, i

2+3" CORVEYgZES.
n=l



The Direct Comparison Test

Here is an example that shows the divergent case:

Example: Determine if the following series converges or diverges: Z

1
’ u-'l2+\/;

o

!
This series is similar in form to ):J— Z - and because the denominator of our original series is always 2 higher,

o I o
this new series is always higher then the orlginal series: 22 v Za Z"Tz =2.5, O<a,=<b,
sl el n=1 §1’ n=|
% : ; 1 5 e
Z 77 is a p-Series with p= 5 which diverges (p must be > 1 for convergence).
n=l B’ 2

Since this new series is higher series is above our original series, it diverging doesn't tell us anything about our
original series - turns out this was a bad choice for the other series.

We will need to pick a different series to compare to, and maybe one which is instead lower than our original series.

To stay under our criginal series, we need the denominator to grow more rapidly with n, so let's try the series z-

n=l M
n 1 2 3 4 5 6 T

Z# 033 029 027 025 024 022 0215 (using calculator table function to check)
PRS-

Z— 1 0.5 0.33 0.25 020 017 0143

=R

This new series starts with terms higher than the original, but for n=5 and higher, it remains below our ariginal series.
It doesn't really matter what happens with the first terms - this is all about convergence/divergence as n —» o0

So we will now call the new series a and the original series b so we have:

z Z“ Zz+\[— Z O<a,<bh, [ﬁ)rnztl]

w1 ni=| el el

This new series is a p-Series with p = 1, so it diverges.

Since this series is always lower than our original series (for n > 4), z J_ diverges.
=] +

#1. Example: Determine if the following series converges or diverges: z > 1
n=1 =




The Limit Comparison Test

Sometimes a series closely resembles another series, but it is difficult to establish, term-by-term, that even after
some value of n one series is always higher than the other. In this case, we can use a different test:

If @,>0, b,>0, and lim:—"=Land Lis finiteand positive, then

Z a, and Z b, cither both converge, or both diverge.

A=l A=l

(See the textbook if you want formal proof of this or the Direct Comparison Test.)

Let's consider a few examples to see how it works...
= 1
#2. Example: Determine if the following series converges or diverges: Z.m

For a similar form series, consider ignoring the constants in the denominator; Z—I
n=l n

1
(3n3—4n+5]

: = e 1 8 o
Both series have positive terms, so now we need to evaluate the limit lim—" lim—= =lim
u-amb rrambn Ay [ 1 ]
.

#

=lim————=—
o3 —4p+5

by L' Hopital :
This limit (L=1/3) is finite and positive so these two series will either both By
diverge or both converge. Evaluating the easier series: = lim e

" by L' Hopital :
ZL is a p-Series with p = 2 so it converges, therefore I
2 =lim==— converges
o H -
i . 1 -y 3
» ———— also converges.
3n°—4n+5

n=|

#3. Example: Determine if the following series converges or diverges: isin (l)

n=l
. (1
Let's try this series: il o [5‘"(;]) sin(ﬁ) o
I

n

by L' Hopital :

() )

. 1
im = limeas| | cos(0)
So L =1 is finite and positive, both series converge or diverge together.

Z— is a p-Series with p = 1 so it diverges, therefore

n=1
= . (1 .
ng — | also diverges.
n=l n



The Limit Comparison Test will often work in place of the Direct Comparison Test
Earlier, we used the Direct Comparison Test to do this example...

- 1
#4 . Example: Determine if the following series converges or diverges: S T
n=1 n

...and determined that the series diverges. It was difficult to find a series that was term-by-term larger (and we had to select one
which only became larger after a certain number of terms). We could have instead just used the Limit Comparison Test:

Select another series, perhaps by ignoring the constant in the denominator: i%= i.n]

)
Evaluate the limit of the ratio of terms: i"n =i{2+”’f’_’ =i Ja [f] (use L'Hopital)
= =1 1 il

0 l

7 is a p-series with p <1 so it diverges, therefore the original series also diverges.
w=l 1

More examples... Determine if the following series converge or diverge

#. 3! #6. 3

n=l nj_l n:[2+3n

#7. A3 By L

n=1 2” n=l ns +4



-

Summary of Tests for Series

Test Series Condition(s) Condition(s) Comment
of Convergence of Divergence
& . This test cannot be used
i I +
mih-tcon ;.21 n wtos 0 10 show convergence.
Geometric Series S ar ] <1 Ir| = 1 Sum: § = —%
(r+0) m=il 1=r
Telescoping Serics b,=b,.) | limb, =L Sum: §=5, — L
il i
. =
== - g | Q<p=sl
p-Series "E:I = 2] p
Alternating Series E (=1 a 4y < @, and Remuinder:
(a, > 0) =l " _,EE'.}D a, =10 IRN| = dyyy
Integral = S
(f is continuous, 2] % G = . Reunainder:
positive, and " flx) dx converges flx) dv diverges -
reasing) a, =fln) =0 I | D<R, < flx) dx
decreas .
i i\ - tim &/Ja] < 1 Jim /la,| > Tor | Testis inconclusive
oot - el e = &5 when lim #a] =1.
ﬂ ! a .
= e fiiii ‘ﬂ_"‘ % 16 Test is inconclusive
i a, lim |—| < | s a,.
ke nZ. ot i, =ﬂ:m a when lim |- = 1.
n—s0C ﬂu
a 0<a, =5b, and 0<bh, =a, and
Direct Comparison E a o8 o
(a,, b, > 0) g0 > b, converges Y b, diverges

n=] =

Limit Comparison
{a, b, > 0)

- ﬂ.ll
lim F=L > (and

o0 '

e
¥ b, converges
n=l1

ﬂ"
im —=L>0
o J'J‘"

=3
and Y b, diverges
w=1

#9.

n=l

i4;3 (use Limit comparison)




Unit 7-5: Alternating Series, Telescoping Series

The Alternating Series Test
An Alternating Series is a series in which the signs of the terms alternative from term to term:

© ol 11
gyl g 1,1 1.1
I Ml

Al

We can test whether or not an alternating series converges by using the Alternating Series Test:

Let a, > 0. The alternating series

i(—i)n a, and :zl(—l)"'la"

n=l

converge when the following are both true:

)lima,=0

2)a

el

<a, jforalln

an

#1. Example: >’(-1)"

=1

n
21!- I

Alternating Series Test can only show convergence

If the two conditions apply for the Alternating Series Test, then the series converges, but technically if these do not
apply, then we can't use the Alternating Series Test and must choose another test to verify that the series diverges.

T Ry L

P n +4




#3. 3 (-1)" @

n=|

B __+E_§+i_§+___
4 5 6 7

lpd | =



Telescoping series
Telescoping series are series which expand to the form: (B, —b, )+ (b, —b,)+ (b, = b, )+ (b, — by ) +...

so that cancellation occurs between terms... et Nt S’

leaving only the first and last term left: b, -0,

For telescoping series, the nth partial sumis: S,=58 -5,
Since the first term is just a number, telescoping series will converge if the last term here converges: ,]ai—Tc(b””)

..and will converge to the sum: §'=5 —lim(5,,,)

-y

We usually need to do some manipulation of the expression to see that a series is telescoping and also need to be
very careful with how the cancellation actually occurs. This is best seen by looking at a more complicated example.

_ - 1
Determine if the series converges and if so to what sum: Zm
=1

This a, has a factored denominatar, which suggests we can expand using Partial Fractions:

( ' 2)=£+ 52 {Arl-ﬂ':{) iy
nin+ no B+ = = =
24=1 ——— — = Rt ESE ey
A(n+2)+B(n)=1 ] ; ;.'n(mrz) z[?.n 2n+2] 2§[n n+2]
(A4+B)n+(24)=(0)n+1 Aoy Smog /
two terms with subtraction = telescoping senes

Now, write out some terms to see how the cancellation works

65): G- G5 G G0 i)

S cancellation happens, but one term is skipped

1 1_1;:_ 1LY (10 1*:_1_.' bl v, i

2[\1 3) (2 & -3 .s' 4 6 577)" %6 )

O s o ./ thisleave two terms at beginning and end

A X s _! 11 1 i

so the expression for the nth partial sumis. s, = 2[1 g

and the limitis: pmdlpel_ 1 1 1,1 1 1] 1.1 o 1.3
) 2 n+l n+2| 2 2 2 3 converges

n=1



Unit 7-6: Absolute vs. Conditional Convergence
Sometimes, a series may have both positive and negative terms (but may or may not be an alternating series)

Absolute Convergence

for example:
n!
One way to learn things about the convergence of such a series is to investigate the series with absolute value of a, :
n=|

isin(n)

=1

=.84147 +.22732 + 01588 —.0473 —.0384 - 0078 +.01341...
Using the Direct Comparison Test, this series can be compared to ZL}

sin(r) converges.

2
n

o

...and Z

n=1
Therefore the absolute value of our original series, Z
n=1
? We need another theorem...

also converges

__ is a p-Series with p = 2 which converges, so this 'squeezes' the

sin(n)

1
n® left series to also converge.

>

(7)

n n
O<a,<bh,
=l nz
Therefore ).
n=|

How does this help us evaluate the convergence of Z o
(n)
J‘T:

converges, then the series >, also converges.

If a series Y |a,
The formal proof of this theorem is in our textbook, but consider this intuitively with our example:

w1

o sin{n)
>
=.84147+.22732 + 01588 — 0473 - 0384 - 0078+ .01341...

term values

1
®
n

]
®
. ‘i /I
It doesn't really matter if we change these three negative values to be positive, what we
are adding to the partial sum is still getting smaller and small. so the sum is converging
to a value, as long as the magnitude of the values is getting smaller.

would be, if a series converges, then the absolute value of the series also converges, and this is not necessarily

But the converse is not true..
this series converges.

ar:+

Okay, so if the absolute value of a series converges, then the original series also converges. But the converse
By the alternating series test...
1 S a"

true. Consider this example of an alternating harmonic series:
kd 1+ l
B | oo (R
;( ) n 2 Iirnl =0
3o n ]
S o
n+l n

o

B

n=1

(-1

n
— which is a p-Series with p = 1, which diverges.

<

But if we took the absolute value:

n=l 1

This would be equivalent to this series:



Absolute vs. Conditional Convergence

There are specific terms for cases related to this, defined as follows:

a,,] converges (and therefore Zaﬂ also converges.)

=1

A series is called Absolutely Convergent if 3
n=1

A series is called Conditionally Convergent if ZG,, converges, but Z a,| diverges,
m=| #=l
A procedure you can use,.. Za
n=l
1) Check convergence of the i|ﬁ' 1
absolute value of the series... =<'
converges diverges
%" a, converges absolutely 2) Perform the
el Alternating Series Test
,, converges diverges
Zu,, converges conditionally 3) technically, you are supposed to

HEl perform a different test which

shows divergence (usually, nth

term test)

Zﬁ‘,, diverges

n=|

Examples: Determine whether the series coverges absolutely or conditionally, or diverges.

n+l



= (-1)"" (2n+3)

3.y

=1 n+10



(minor, but interesting fact): Rearrangement of Series

Later in this unit we may encounter series where it is advantageous to rearrange the order of the terms, and determine the sum of the
series. Counter-intuitively, when you rearrange the terms of an infinite series it can actually change the sum to which a series (if
convergent) converges to. We can use the fact that the series is absolutely or conditional convergent to predict things about the effect of
term rearrangement.
This is not an issue with a finite series: 1+3-2+5-4 §=3

1+3+5-2-4 S§=3

111111 111 1 1 1 1 1

= N+1
But fer thi i S Tl T W SRE T PR 0O SR T S S
utconsider thisseres:  D(-1)" S=g-ota-gvr-Etr et s N 2T s

here are the partial sums adding 1, then 2, then 3, etc. terms:
1, .5, .83, 58, .78, .62, .76, .63, .75, 6, .74, .6532, 7301, .6587 >In2

However, if you rearrange the terms like this:
= ne 1 1 1 1 1 1 1 1 1 1 1 1
Z(—l) —=| ——= =] === |—= +| = |——=t| =——|...
= n ] 2 4 3 6 8 5 10 12 7 14
now you get these partial SUMs: 5 25 417, 292, 392, 3083, 4869 — ~In2
2

...the partial sums are converging on a different sum for the series, just be regrouping the terms!

This is counter-intuitive but is a real effect, one of the many strange things that happen as we consider things involving infinity.

The reason this is important to us in this course, is that later we may want to rearrange terms while finding a sum, but we don't
want to do that if rearrangement would affect the series sum. Fortunately, this effect doesn't happen for all series, and we can
predict when it will happen:

If a series is absolute convergent, then its terms can be rearranged in any order without changing the sum of the series.

If a series is conditionally convergent, then rearranging its terms will change the sum of the series.




Unit 7-7: The Ratio and Root Tests

The Ratio Test

Let Za,, be a series with nonzero terms:

** The Ratio Test is especially

; . ood for factorials and for series
1) The series Y _a, converges absolutely when i{n} % <1 gexpressed as a function of the
" previous term.
i ; P P
2) The series Za,, diverges when lim|—2%|>1 or lim|—2|=w
oo an —»an aﬂ
. a
3) The Ratio Test is inconclusive when lim|—2L{ =1
n—a a"
Sn+1
= 2" w2 & =2, u,= a,
#. 2~ 4n+3
n=1 H: 2, 2, 2.13333333, 2.35789%4...



If these tests are inconclusive, you must use another method to evaluate convergence...




The Root Test

Formasses: 2 u ** The Root Test is especially good

; for series involving nth powers.
1) The series »_a, converges absolutely when lim 2 [a| <1 g P

n—e

2) The series > a, diverges when limz/la,| >1 or limz/la,| =
ey Frepan

3) The Root Test is inconclusive when limy/|a,| =1

w 2n 0 n
#4' Zen #5 Z 2” }

n=l n n=1 H"‘l



' B

Summary of Tests for Series

Test Series Condition(s) Condition(s) Comment
of Convergence of Divergence
& . This test cannot be used
i I +
mih-tcon El n wtos 0 10 show convergence.
Geometric Series S ar ] <1 Ir| = 1 Sum: § = —%
(r# U} m=il 1=r
Telescoping Serics b,=b,.) | limb, =L Sum: §=5, — L
n-l A ——)
. =
== - g | Q<p=sl
p-Series "'2; = p P
Alternating Series i (=1 a 4y < @, and Remuinder:
(a, > 0) =l " _,EEED a, =10 IR.'\-'| = dyyy
Integral = S
(f is continuous, = % = o _ Remainder:
positive, and " flx) dx converges flx) dv diverges -
reasing) a, =fln) =0 I | D<R, < flx) dx
decreas .
Z tim /e ] < 1 JE‘; Vla,| > Lor | Test is inconclusive
Root P et i g when lim ¥/a,[ = 1.
ﬂ ! a .
= e fiiii ‘ﬂ_’" % lier Test is inconclusive
i i, r - = l n— Byt
wann n2| ey -3 i, =T;g i when lim ’; =1
& 0<a, =5b, and 0<bh, =a, and
Direct Comparison a o8 o
(a,, b, > 0) g0 > b, converges Y b, diverges
n=] m=]
d]l . ﬂﬂ
; . e lim — =L > 0and im —=L >0
Limit Comparison E > n—oe b, nsee b,
la, b, > 0) = § b_conver d 3 i
O s ges and Y b, diverges
n=1 n=1

—



Unit 7-8: Error for Alternating Series

Alternating Series Remainder

For a convergent alternating series, the partial sum S, can be a useful approximation to the series sum S.
You can use a calculator Series function to either write out the terms of a series, or to find partial sums:

i(_l)ml%

=l

To write out the terms of the series, enter @, as if you are going to graph and use a table:

aQ a, a, a,
1 - 25 11111 —.0625

To write out the partial sums of the series, use the Summation function (under MATH):

S, S, S, S, .

1 .75 861111 798611
...or you can just write out the terms, them sum them up manually: S, =1-.25+.111111=.861111
Series Terms... Series Partial Sums...
a, a, a, a, S5, S, S, S,
1 -25 11111 -.0625 .. 1 75 -861111 798611 ..
Term values Partial Sums (the sum if we truncate
1 P the series after this many terms)
l 1 [ i lr
-1 o S -------------------_::'---'-— S The true sum value
;( ) p . ° 0.79861 Sy
‘Error' or 'Remainder’
® = difference between the actual
L series sum and the partial sum 9}
° [ n The truncated series
°
S
l Sy

= e l I

S5 = 1- 256 4 1111 - 0825(+ ... = 0.79861

n=1 n :

truncating the series after 4 terms

Alternating Series Remainder

If you go far enough out in the terms (and the alternating series is converging) you can get as close as you wish to
the actual sum...you get closer to the actual sum the more terms you include in the partial sum. The difference
between the actual sum and your approximation is called the Remainder and represents how much error there is in
your approximation:

remainder, Ry, =S — S, for an N term partial sum

The following theorem is helpful for approximating an alternating series sum:

If a convergent alternating series satisfies the condition 4,,, = a,, then the absolute value of the
remainder R, involved in approximating the sum S by S, is less than or equal to the first neglected term:

IS_SlelRN‘EaNH




a ; fl et ]
#1. Example: Approximate the sum of the series by its first six terms: Z(—l) L

Finding N for a given allowable error

We can also determine the minimum number of terms a partial sum must have to approximate the series sum of an
alternating series to a given maximum error:

#2. Example: Determine the number of terms required to approximate the sum of the series i(—U”H i
with an error of less than 0.001: '
n=l

#3. How many terms of the series do we need to approximate the sum fo an error of < 0.002? Z 2
n=1



Unit 7 Part 1: Strategies for testing Series

Different textbooks suggest different 'orders’ of tests to try. My approach is...

Try these, in order:

1) Does the nth term approach 0?7 If not, the series diverges by the nth term test.

2) Is the series form Geometric or p-Series or an Alternating Series? Use matching test.

3) Factorials or rules where next term is a function of previous term? Use Ratio Test

4) Does dropping a constant make it Geometric or p-Series? Limits (or maybe Direct) Comparison
5) Is the whole a, to a power? Root test

6) Denominator factorable? Partial Fraction expansion to Telescoping Series

7) Integral test as a last resort

Only need to check for conditional vs. absolute convergence if the question directly asks for this and the
series has a mix of positive and negative terms.



Unit 7-9: Power Series

Power Series

In this section, we will study Power Series which are defined as follows:

If x is a variahle, then an infinite series of the form:
i
ax"=a +ax+ax’*+ax’+.. +ax"+
X =4yt 4 p a, -t

n=0
is called a Power Series. More generally, an infinite series of the form:

ga,, (x—c) =a, +ﬂ,(Jlr—«':}+a?(:|c_‘-;)2 +d3(x—c)3 bota, (x—) 4.

is called a Power Series centered at ¢, where c is a constant.

Examples of Power Series

- In xE x3
A Power Series centered at 0: Z—= l+x+—+—+...
= n! 2! 3

A Power Series centered at -1: i(—l)"(x +1)" =1—(x+1)+(x+1)" —(x+1)" +...
=

(x-5) :(Jvc—5)+%(x—5)2 +%(x~5)3+...

. =1
A Power Series centered at5: > —
n=0 H

Radius and Interval of Convergence

A Power Series can be thought of as a function of x: f(x) = Zan (x—c)"
n=0
where the domain of f is the set of all x for which the power series converges.

The constant ¢ always lies in the domain of f, and there are 3 possibilities for the domain:

series converges only at x =c

1) A single point: g X
7
: R _R :
2) an interval ¢ . F—Xx series converges absolutely for |x = c\ <R
With rediys A diverges for |x—c|>R
3) all x: ol nu:aber el X series converges absolutely for all x

1) A single point: R =0
2)aninterval. R=R
3)allx: R=o0

R = Radius of convergence of the power series:

The set of all x for which the series converges is called the interval of convergence.



Determining the Radius and Interval of Convergence

Although we may use any method to determine convergence of a power series, our main tool is the Ratio Test.
Examples: Find the radius of convergence for the given series:

#1. 23[x—2)” #2 Z ( ] o #3 ZH!X"
2

=il H+] n=0

) . |la
ratio test: lim|—2L

| o
]

ml
wl 3(x-2)
lim (x—2)(x—"2)"
n-pan {x_z)
!1m|x 2|

|x—2|<l

—-l<x-2<1

l<x<3

center =2
R=1

Endpoint Convergence

The Ratio Test is inconclusive if the limit = 1, so that means that we must test for convergence atx - R, and x + R by hand

using others tests of convergence. Each endpoint may converge or diverge independently of the other, which
means there are really 6 possible cases for the interval of convergence:

1) A single point: g X series converges only at x =c
R R .
2a) ¢ » —x series converges for (x—R, x+R)
R R .
2b) I @ F—x series converges for [x —R, x+R )
c
R R ,
2¢c) t L2 }—x series converges for (x -R, x+ R]
c
. R R . .
2d) i . }—x series converges for [x -R, x+ R]

(entire number line) .
3) all x: = x series converges for (—w, o)




Endpoint Convergence

Examples: Find the interval of convergence for the given series:

o n
x+] *
#4. Z— #5. Z( f #. 23
w=l 1 n=0 n=l
- H anl]
ratio test : lim <1 converges
n—»n an
il
m ) xm!
fim |21 — jjm| =2
n—rm| oy ol 41 x
n
Ilm—|xJ
e 4]

( )[:cl COnverges when :

Ix|<l so -l<x<l
Now test each endpoint...
when x =-1:
m=1

is an alternating series,

ix

n=t 1

-1)’

so use alternating series test:

lima, = Iirnl =0

- L]

? 1 1
L s

converges for x=—1

when x =1:

is a p— Series with p=1,
so it diverges, and the

power series diverges af x =1

interval of convergence = [—1, 1)




Derivatives and Integrals of Power Series

Since a power series can be thought of as equivalent to a function, you can also take derivatives and integrals of power series.

If the function 1 (x)= iaﬂ(x—c)" =ay+a,(x—c)+a,(x—¢c) +.a,(x—c) +...
n=0
has a radius of convergence of R >0, then, on the interval (c— R, c+ R]

/s differentiable (and therefore continuous). Moreover, the derivative and antiderivative of f are:

f(x)= gna, (x—¢)"" =g +2a,(x—c)+3a,(x—c)’ +...

(x —c }.-r+l

If(x)d:c=C+ian =C+ao(x_c)+al(x“')l+a2(x—¢')3___

n+l 2 4

The radius of convergence of the series obtained by differentiating or integrating a power series is the same

as that of the original power series. The interval of convergence, however, may differ as a result of behavior
at the endpoints.

& _'1 i+l —l n+l
Example: Find the intervals of convergence of f(x), f'(x), and _ff(x}dx for f(x)zz( ) (x[ )
= n+
First, let's just find the series for the derivative and integral:

#7. f'(x) #8. [ f(x)ax



Derivatives and Integrals of Power Series o i
& ] 1

Example: Find the intervals of convergence of f(x), f'(x), and If (x)dx for f(x) =zw
=}

s3I G”
(Jc—l;""'2 (n+1)

ratio test : lim

nyw

|{r1+l (x—1)(x- l)'“'

”wl(n+2} (x-1)"" |

+1
lim 2 f(x -1
"I'T'En+2(x )|

M)(x—1)|<1

O<x<2

test x=0...

l)n#] (0 i) ntl
n+l

Z( I]ani( l]n&l

e n+l

aMﬂ

" s 1
o+l n+l
positive, decreasing

integral test :

@ 1 -
—dx=|1 1

limIn|b+1|—In}l|

bepm

-0 diverges at x=0

test x=2...

I)"H(z ] ]
n+l

s

= n+l

e DMS

alternating series lest

lim——=0
el

% {
@l ———
nl n+2 n+l

converges at x=12

interval of convergence=(0, 2]

[n+2) (x—])"”

(x)= Z(:v.r+l} 1) (x-1)

n+l

=§(—1)"” (-1

n+l1

S

prard (n +])(n+2)

same R, so
0< x <2, recheck endpoints
test x =0...

E _l)m!({)_])n
2NE
210

i(— 1) diverges at x =0
a=ll

test x=2...

S )"y
SEDEY )

iﬂ(—l)(—l}" diverges al x =2

interval of convergence = (D, 2)

same R, so
0 < x <2, recheck endpoints
test x=0...

(—I}"‘I(O—l)n-’z
= (n+1)(n+2)
o (=)™ (=1)(=1)"™
= (n+1)(n+2)
o (1™
,_0(n+]){n+2}
(-1)
(n+l){n+2}

Ny —

o nﬂ2+3ﬂ+2

[™1s

s

2

limit comparison with z —
n=0 ”

(p—series w/ p =2, converges)

1
; (nz +3n+l)
lim|~—————F—4
n—pan -_]__
()
2

. n
lim——«—|=
nsei g 4+ 30+ 1

finite, positive so series are" linked"

converges at x=2

test x=2...

(_I)Jﬂl (2 _.[)-N-E
(n + I)(n + 2)
& ()™
( 1)(n+2)
(_l)nd
g (n + I)(n + 2)

alternating series test :

ips

MQ QM

: 1 B
)

[ ;a ] < !

" (n+2)(n+3) (n+1)(n+2)

converges at x =12

interval of convergence =10, 2]




Unit 7-10: Power Series Representation of Functions

Power Series Representation of a Function | | 3

https://www.desmos.com/calculator/98tegqkpy2

1 2 3 | ' 2
y=——wra+bx+cx +dx +...

1—x

Playing around with the parameters, we end up with | . 1
this for a 3rd degree power series approximation to
the function:

_ 1 - 2 3
y=——=l+x+x"+x +.. > 0 3
1=

This is only a perfect match at the centering value, x = 0, and the difference between the function and the power series
approximation (the 'error') gets larger the farther we are from the centering value in x.

Geometric Power Series

It would be good if we had a procedure to come up with the term coefficients without having to try different values
experimentally. For some functions, we can do this by matching the given function to the sum of a geometric series:

S —
Zar e |r|4l

n=0

i 1 ; ; ;
If we have a function of the form f(x) R this closely resembles the sum of a geometric series

So if we match a=1 and r=x, then

M

f(x)zé: mr”:inl(:c)”=1+x+xz+x3 +oi

-]

over the interval of convergence for this series.

Therefore, a function may be represented by a power series (over its interval of convergence), although
this representation only works at the x where the series is centered. Here, that would be x = 0.

If we wanted a power series to represent this function around x = -1, that would require a different series centered at -1.

That means in place of x we need (x+1). Here are the steps needed to convert from centering at 0 to -1:

#1. Find a power series centered at x = -1 to represent ]—

i
(M)
l-x l-x+1-1 1+l-x-1 2—(x+1) l_[x+1)

2

a
Now we match to the form I— tofindaandrr a= %, r= =

Then we build the corresponding geometric series: Zar” e ZIE[’C_H]
n=0 n=0
11

1 2 1 3
_§+Z(x+l)+§(x+l) +E(x+l) +...



Geometric Power Series

od

n=0
We need to also find the interval of convergence. Since this is a geometric series...
|r| <l

x+1
— <1

—l<x—+l<l
2

—2<x+1<2
-3<x<]
(=3:1)
(We don't need to test endpeints because when a geometric series always diverges forr=1)
Examples of converting functions to geometric form

We can sometimes also convert other function forms to geometric form to find corresponding geometric power series.

4

#2. f(x)=—5  centeredat0 H3 f(x)=l centered at 1
X
4 L
2—[—x} ] —x 1-1+x
5 1
- =)
y P
[ 2] :
1=(—x+1)
a=2, ,»:_% a=1, r=-x+1
@ ., 0 iid Ear":i:](—x+l]"
i
T N ‘fd =3 (<1(x-1))’ ~l<x-1<I
YCIEJ NG = 0<r<2

—
L
bJ
—
]

(1) (x=1) (0,2)

=0

Using polynomial division to find power series
For some functions, we can use polynomial division to find the power series representation.

o1,
F(x)= xiz 2"”?“]* Previous example, this is represented by:
2+x) 4 = - 7
) 23 (1) [f) —2—xalp Loy
—(4+2I) n=0 2 2 4
—-2x
—{2x—x2]
x2
|
- P +=x
\ 2 )



Operations with Power Series

Some properties related to operations on power series turn out to be helpful...

But operations of any kind may affect the

Let f(x Z“ x" and g(x ben interval of convergence. With these
properties, if using more than one function,
. Za k"x" the interval of convergence is the
" intersection of the individual intervals:

2 f(xﬂf):iaﬂxw ZZ[) Z[ %)xn

n=l}

F(x)£g(x)=3 (e, £b)x (L) (-22) so (-L1)

An example where properties are helpful

#4. f(x)= 3x—1 First, this can be separated using Partial Fraction Expansion:
P

-1
centered at 0 SJ:_] = 4 + d A(x+1)+B(x—1):3x—l
x=1 x-=1 x+1

(4+B)x+(A-B)=(3)x—1

A+B=3
x-1_1 . 2 { A=1, B=2
A-B=-1

—x  1-(=x)
(D + S
(D + S )
Z{eAy e

Using derivatives and integrals to find power series representations of other form function

So far, we've been restricted to rational function forms, but what if we wanted a power series
representation for f(x)=1In(x)?

S(x)=In(x)?
Note that the derivative of this is: ¢ (x] — centered at 1
Which we previous saw was represented by Z( (x—1)" over (0,2)
Since f(x)=In(x J' dx to establish C we use the x value where the series was centered
here that was 1: (x-n"
] C
x] IZ (x 1 " x) +Z( ) n+l
n=0 - ]]_l)rnl
- In(1)=C+ Y (-1 (-1
C+Z[ 1) =1 nf1) C+§:( ) n+1
n—0 n+l ntl
(x 1)’“' 0:“2(")"(0)”
S i A=l h
o [fin(x)= Z( 1) 0=C#0, C=0




Using derivatives and integrals to find power series representations of other form function
When we use this procedure, we should recheck the endpoints. Sometimes, even if they were divergent

before, now they may converge:

(=5 0T 02

(0.2)

Another example (we'll use the result on the next slide)

In(x+1) centered at0

f(x)=

Fx)=——=
so f(x)=In(x+1)= C+IZ(——I)"J:" dx
~In(x+1)= c+z 1)"*‘_
In((0)+1)= uz( oy @7

n+l
0=C

s0 £ (x) = In(x+1) =351 2

atx=0:

RO -

x=0 x=2
& ”{[U]—I)“I ( )ml
;(—l] n+1 Z{ } n+l
])Hl-l I -tk
E;' {n+] E; }"H
use alternating series test
$ Ly Iy ,
= n+l }'iﬂm=0
a1 ?
SN0
= b e
Tl n+2 n+l
”I converges
;m is positive, decreasing
use integral test :
L3 I ; L
_!'mdxﬂl_’mt[lnij”l
oo -0 diverges
interval of convergence
an nl
=1 n X
,,z:f( ) n+l
ratio test:
2
P I (n+1))_ "“l’“" ‘:(l)lx\ﬂ
now| g nw1(n+2) x™ n- mn+2| ‘
—l<x<l
check endpoints:
x=-1:
rrll
S ( 1) (1)’ 1
I ) ) s

o 1
Z—l is positive, decreasing -

b

o n+l

Sy L

alternating series fest :

]
——<—— converges
n+2 n+l

integral test

T—dx llm[]n|x+]|] =00
1

so interval of convergence:

(-1.1]



You can sometimes find the sum of a convergent series by evaluating the function it represents

Example: Find the sum of the convergent series 2( )" '3 e 1)

In the last example we found: In(x+1) Z( I)"x ]
n+

1

g(_l)m 3 (n+1)

l]ﬂl'
(s o
n+1) maiches form ;(—1) (n+l)—ln(x+1:|

-3)2(

_—

Therefore, Z( 1)"+] 3n(n+|) [% ]

()



Unit 7-11: Taylor and Maclaurin Polynomials and Series
Power Series can approximate a function over a region
https://www.desmos.com/calculator/rhvvetxz9c

We've seen that we can build a power function to correspond to a given function that is perfect at the centering x value and
whose error increases the further we are from that x:

y =sin(x)

i

yax—0.167x +0.00833x° — 0.0001984x"

If you include an infinite number of terms, the power series can actually perfectly match the given function if the coefficients are
set correctly. Here is sin(x) being approximated by a power series with only

3 oy 11 3 i 17 1 21 23
% x+x° x +x' x5+x x9+x x>
T e e e e e

35 7t 90 11 13! 15! 17! 19 21 23!
Taylor/Maclaurin Polynomials and Series

We can try matching the function to a Geometric series to find the coefficients, but this doesn't work very often.
There is a different procedure we can use to find the coefficients that works with all functions.

The result is called a Taylor Series if we are using an infinite series and a Taylor Polynomial if we fruncate
and only use some of the terms.

If we are centering at x = 0, then the results is alsc called a Maclaurin Series (or Polynomial).

2

. x:! x.‘F x'il x9 xll xl.‘ xlﬁ xl‘? x19 xll xm
sin(x)=m P(x)— 4+ = T e e T
31 5! 7t 9 11! 13t 15! 171 19! 21t 23

This is called the 23rd-degree Taylor Polynomial for sin(x)
(It could also be called the 23rd-degree Maclaurin Polynomial, because it is centered at x = 0)



Derivation of the Taylor Polynomial procedure

The way we form such a polynomial is to first require that the y-values of the original function, f(x), and the polynomial
approximation function, P(x), match at the desired x-value, which we label c:

P(e)=1(e)

To add terms in order to get a higher-degree polynomial approximation, we then also require one or more derivatives to
be equal between the original function and the polynomial function. Wherever we decide to stop, that polynomial is
called the 'nth order polynomial approximation’, labeled P, (c) where ¢ is the x-value we are approximating around.

For example, to create the fourth-degree approximating polynomial 2, (x)we need:
P(e)=/(e)
P(e)=71'(c)
P(e)=1"(c)
P"(c)=1"(c)
PO(e) =1 (c)
This is easiest to understand by looking at a specific example...

Let's find a 3rd-order polynomial to approximate f(x)=e" around x=0.

We can first postulate a 3rd-degree polynomial with unknown coefficients:

P;(x):au+a](x—0)+az(x—0)2+a3(x—0)3
f;(x)z a, +ax+a,x* +ax’

We can then take 3 derivatives of both the original function and the polynomial approximation:

original function polynomial approximation function
f(x)=¢ P (x)=a,+ax+ax’ +ax
f'(x)=¢€" P/(x)=a,+2a,x+3ax

fT(x)=¢€" P (x)=2a, +6ax

S(x)=¢€ B (x)=6a,

Now we can replace all x values with the particular c value (in this case 0) and set the ariginal function and

polynomial function equal for each derivative (and y expressions). This will form a system of equations where the
values to solve for are the unknown coefficients:

original function polynomial approximation function

f(0)=¢"~1 B(0)=a,+4(0)+4,(0) +&,(0) =4, 4 =1

[(0)=¢"=1 P/ (0)=a,+24,(0)+34,(0) =q, a=

7 (0)=¢e’=1 P (0)=2a,+6a,(0)=2a, 2a, =1

IT(0)=¢"=1 P (0)=6a, 6a, =
system:

a, =1 solution lo the system: a,=1, a, =1, a, =%, a, =é

a = , . I 1

2a, =1 There is a pattern to these coefficients: (az = Tk a, = 5]

6a, =1

That means  |f(x)=e*~P(x)=1 +l.1:+%;|c2 +%x3 (inthe vicinity of x=0)




Taylor and Maclaurin Polynomials

Defining this process more generally provides the definition of nth-degree Taylor and Maclaurin Polynomial Approximations:

If / has nderivatives at ¢, then the polynomial
_ , J"(¢) 2 S7(e) 3 () "
P(x)=f(c)+ f'(c)(x—¢) +T(x—c) + T(x—c) +.oat T[x —¢)
is called the nth-degree Taylor polynomial for yat c.

/(0)

If ¢=0,then the polynomial
f'(o)xz+f (0)x3+. + ¥

P (x)=/(0)+ 1" (0)x+ 21 3! T n

is called the nth-degree Maclaurin polynomial for fat c.

(the full derivation of this more general definition is shown in our textbock if you are interested in seeing it)

Taylor and Maclaurin Series

Generalizing this procedure for an infinite number of terms gives the definition of a Taylor Series:

If a function f has derivatives of all orders at x = ¢, then the series

> oy = p o)+ (@ x-e) + LD (o 1 L)

 n! 21 3!

UG,

(x—c) + p

(x=¢)" +...

is called the Taylor Series for fat ¢. If ¢ =0, then the series is called the Maclaurin Series for /

#1. Find the n=3 Taylor
polynomial for f(x)=/x
atc=4

#2. Find the nth Maclaurin
polynomial for /(x)=e"



#3. Find the n=4 Taylor
polynomial for f(x)=Inx
atc=1

Find the Maclaurin Series for the function f(x)=sinx
First, write out the function, and a few derivatives, and solving for the values at x =
f(x}=sinx j'(0)=
f'(x)=cosx  f'(0)=1
f"(x)=-sinx f"(0)=0
ST(x)==cosx f"(0)=-
U (x)=sinx  fU(0)=0
f'['s}(x)=cosx fm((]):]

Next, use the definition of Taylor Series to build some terms of the series...

?Z-f“”(c:l(n'—c}" c)+f'(c)(x—ec)+ f"[c‘}{\_ {2‘]: /(<) :

3
x—¢) + x—c) +..
o n! 2! 3! ( )

¢ (c = 0 for Maclaurin)...

0 -1 3 0 o1 s
=0+l(.\'~0)+§(.v~(}} +-—3—![.r—-0) +Z—!{x—[}] +§{.\'—-U) +...

Then, eliminate any zero terms, and write the term number under each term...
-1 3 1 s
=I(x—0)+3—!(x—0) +5—!(x—0) + ...
n=>0 n=1 n=2

Now we need to figure out an expression for the nth term...

(-1)" (x_o)zm;

(2n+1)!

Finally write out the series: s (G N




Taylor and Maclaurin Series Examples
Find the Taylor Series for the function f{x)z% centered atc = 2.
- X

First, write out the function. and a few derivatives. and solving for the values at x = ¢ (c = 0 for Maclaurin)...

fx) === (1-%)" f@) ==
f’{-\"J=-{1--\'l3{-1}=E1--\'}’=“+_‘_)7 r/2)=1
£7(x) = =2(1=2)" (=) =2(1=x)" —“;‘} PRy=ss
£7(%) =2(=3)(1-x) " (~1) = 6(1-x)" =“i_}_. r7(2)=6

S (x) = 6(~4) (1-x) " (<) = 24(1-x)" =22 19(2) =24

(1-x)" °
Next, use the definition of Taylor Series to build some terms of the series...

i—f i (C){.r—c]” =f{c]+f'{c){x—c)-i——'f"(c)(x—c)" +—_f"'{,;») (x—c)' + /o) [C](A\'—c}" +...

- 1 2! 3! n!

-2 2 6, 3 24, .
=—1+1({x=2 )+?(\—2) +§(.\—2) +T(l_2) +..

Then, eliminate any zero terms, and write the term number under each term and find an expression for the nth term...

"'2 2 6 3 24 4
= -1 +(x=2)+57(-2) +3—’!{.\--2) +T(a—2) +.

Finally write out the series: %: i( 1)"“( 2)" =-1 +(x_z)_(x_2)" +(x_2)3 o

We could also have used our Geometric Series procedure instead...

i—)é centered at ¢ =2, x —>(x—2) iﬂ =§1 (—x+2)"
1 2, n
I—x+2-2 :Zn(-])(("])(x-z))
1 e
1-(x-2)-2 =2 LY g
1 o
“1-(x-2) =20 (x-2)
1 ...which maiches what w_e got with the Taylor procedure:
(=+2)) L &y am
L =)™ (-2
= a=-1, r=—x+2 -t

l—(—x+2) 1-r



Unit 7-12: Binomial Series, Using lists of Power Series

Binomial Series

If the function we are representing is of the form: /(x)=(1+x)"
then the series is called a Binomial Series.

Example; Find the Maclaurin Series to represent s (x)=(I +x}
f(x)=(1+x)" f(0)=
f'(x)=k(1+x)" 1'(0)=k
f"(t =k(k=1)(1+x)" f7(0)=k(k=1)
)=k (=1 (k-2) (12" f(0)=k(k-1)(k-2)
Zﬂf II ﬂ‘}”=f(c]+f'{c'}{.\'-c}+%[r-c‘];+${x—c‘}j+ %{x—c}”+...

= I+k{x—ﬂ}+@(r—ﬂ}: +w{r )

3!

k(k-1)(k-2)
31 5. S

=1+kx+k{z'_l)x2+

which can be shown to have an interval of convergence of (-1, 1)

With more complicated functions, using the Taylor procedure can be difficult...
Example: Find the power series for f(x)=sin(x")
Taking derivatives... £ (x)=sin(x*)
f* (x)zcos(x }[21)
f"(x)=cos(xz)(2)+(2x)(—sin(x2](2x))

...we can see that the derivatives quickly get very complicated, and are not of the same form, so it will not be
possible in a case like this to use the definition of the Taylor Series to find the series.

In cases like this, we can employ a list of pre-calculated power series for elementary functions.



Power Series for Elementary Functions

Function
%=1—(xr1]+(r"1)’-(:—1)3+(x~1}4— (-1 + -
1J1rx : it (o Lt s
Inx=(.t—l)-(x_2”3+{x_31)3_(x;1]4+___+(‘1:'“":1(x—1}"+
ﬁ=1+x+§+§+£+;—j+...+§+“_ memGriZEthase!_
wrs- g oo
s § g b
arctanx=x—;—3+§um%+"§—....!.___(_ZL)"f';”+,__ ‘
R :;33 o .43x55+ s -~ -65;:7? KA +(2f:;)§n: TR
(1+xf=1+k+ “f;”f Hkﬂlﬁif*zw k(‘-'fl){k;!i)(k—?a}x‘

]

*The convergence 8t x = £ ] depends on the value of k.

Using the basic list to find power series
#1. Find the power series for f(x)= cus(\}g‘)

(el
“(2n)

¥ i xﬂ
cosx=1——+———
2! 41 6! '

Interval of
Convergence

0<x<2
-1<x<1
D<x=2
-0 < x< o0

—w<x< o0

Just substitute the expression for the argument in place of the x...

()

cos(+x) = i

o
m(ﬁ)ziﬂ

2n)!

n=0




Using the basic list to find power series
#2. Find the power series for f(x)=e"arctan x
You can also combine basic list power series using arithmetic operation such as multiplication...

3

& 21+_\.+£+_+_ Note: you cannot just multiply the expressions
2!

3 for the nth term because of the term combination
R interactions.
arctany =x——+———+
5 7
2 3 i 5 7
¥ X X X X x
e arctanx = 1+I+—+—+... X e e e et e i
21 3 3 5 T
i 5 7 3 5 3 i 7 3 T
X X X X X X X X X X X
=1yt x| A = gyl e Sy
% Joo{ e G Jo -2
I oot ot oy gl ot o a? ot 5 o g
=x——+ R S O S O 1 RO <. NS S R 1S5
3 7 3 5 7 2 6 10 14 6 18 30 42
2 1 3 . 23 1 1
=x+xt+=x—=xt = o T —— 2 - — " - —x"" &

Example: Find the power series for f(x)=tanx

- ) . . 1 |
You can use division to find a senes for tanx...  sinx=x- Ex" + ﬁax-“ + e

I3 1 ,
cosx=l-—x"+—x +...
2 24

2 Sl B,

using polynomial division...




Using the basic list to find power series

Find the power series for f(x)=sin’x
. " . ; , C i35 I-cos2x 1 1
You can use identities to convert things into forms in the basic list. sin"x= ——— :E—Ems(h)

2 2n+1 We can just work with the nth term here because
Z( ) ( x) we are just multiplying every term by the same

11
SIFI X=———0C08 .
2 3 (2% (2r+1)t|  thing.

]
#3. Use a power series to approximate Ie"':dx
i}

First expand out terms using the basic list form:

& =l+x +l;r:2 +lr3 +I—x‘ +Lxs .
2 6 24 120
) 1 (—2)+ %(_f)” +%(—x2)3 (=) (=)

! 1 1
e:( ) )= 1+—x* +—x* —-—.1c6+l—.7cIi -——x'+
6 24 120

Then integrate term by term:

24 120

b B 8 4 W5 A o 7
=|X=—=XF—) —— X F——y - b shak 3
37 107 427 2160 1320

b ' 1 1 1 1
[e Yy =J{l+—:ﬁ B B T T +...]:b.'
! 2" 6 .

0

=30 ) = 0 = () |- 00 20 0 = o0 =0 - ()

i [orm e smip s ot R OVTAGT 20




Unit 7-13: Lagrange Error for Taylor Polynomials

Remember Alternating Series Error?

If you go far enough out in the terms (and the alternating series is converging) you can get as close as you wish to
the actual sum...you get closer to the actual sum the more terms you include in the partial sum. The difference
between the actual sum and your approximation is called the Remainder and represents how much error there is in

your approximation:

remainder, R, =8 —8,, foran N term partial sum

The following theorem is helpful for approximating an alternating series sum:

If a convergent alternating series satisfies the condition a,., =4, , then the absolute value of the
remainder R, involved in approximating the sum § by §, is less than or equal to the first neglected term:

|S—Sy|=|Ry|<ay., (the value of the first neglected term)

Remainder/Error for a Taylor Polynomial

The error (or remainder) between a Taylor Polynomial and the function it represents is similar in concept:

Alternating Series

&

]
Da,=a+a, +a,+aj+a,.=S \
n=1

I e

Taylor Polynomial

a+a,+.+a, =8

” k=

|Alternating Series Remainder| <|a,,,|

|Alternating Series R inder| < |15t neglected term|

Lagrange Remainder| <

Remainder/Error depends upon 2 things:

« How many terms are included (degree)
s The x-value you are evaluating the
polynomial and function at, and how far
away this x-value is from the centering
value.

Like the Alternating Series Remainder, the Taylor Polynomial Remainder is still
determined by the first neglected term, but now the expression for calculating
this depends upon that term's derivative and the particular x-value you plug in,
and it is called the Lagrange Remainder:

f(”'l)(z) Nl
(N+1)! x=¢)

Where s"*Y(z) is the maximum value of the derivative in the
interval of interest, between the centering x-value and the x-value
where you are evaluating the function.




Examples to help us see how this works in different cases...
1] ]

n!

#1. For the series i(—l)
n=1

(a) Approximate the sum of the series by using the first 6 terms.
(b) Find the upper bound for the remainder for the approximation in part a.

(c) Find upper and lower bounds for the actual sum of the series.

- a1
4 i =] Y
#2. For the series ;( ) ().

(a) Approximate the sum of the series with an error of less than 0.001.

(b) Which memorized Power Series matches this series form?
Use the function for the matching series to find the actual value of the given series.



#3. (a) Estimate e’ using a Maclaurin polynomial of degree 10 for e*

(b) Use the Lagrange form of the remainder (error) to find the upper bound of
the error using this partial sum.

(c) What is the actual error |f(x) - P(x)|?

#4. If £ (x)=700sin(x) andif x=0.7 is in the convergence interval for the power series of f

centered at x=0 , find an upper limit for the error when the fourth-degree Taylor polynomial
is used to approximate f(0.7)

#5. If /'(x) is a positive, decreasing function, find the error bound when a 5th degree
Taylor polynomial centered at x =4 is used to approximate f( 4.1)

(Assume the series converges for x=4.1)



#6. The Taylor series for In(x) , centeredat x=1 is i(ﬂ""ﬂ

n=1 n

Let / be the function given by the sum of the first three nonzero terms of this series.

The maximum value of |In(x)—/(x)| for 0.3<x<1.7 is:

(A)
(B)
(©)
(D)
(E)

0.030
0.039
0.145
0.153
0.529

e First, try Lagrange error.
e Next, try Alternating Series Error

e Finally, can we just compute the actual error over this x interval?



