AP Calc BC — Lesson Notes — Unit 6: Intro to Differential Equations

Unit 6-1: Infroduction to Differential Equations
{slope fields, verifying solutions) -

What is a differential equation?

A differential equation is an equation (contains an equals sign which states
the two sides are equal} but where at ieast one term contains a derivative.
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A solution fo a differential equation is itself an equation - an equation
which tompletely satisfies the original differential equation.
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Method for find a solution to a DE: Integration

There are many methods for finding the solution functions to differential equations (which is why there is an entire course
about this), but we will learn just a few methods for solving DEs this year. The first is useful if we have a DE in which the
highest order derivative is a firsk-derivative, and which can be solved for that derivative (called first-order differential
gquation). If this case, we can find the solution function by simply integrating the differential equation.
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The general solution and particular solutions -

Solving a differential equation always involves undoing a derivative in some way so there is always an
integration constant. There are an infinite number of these solutions each with g different integration
constant, so this solution is called the general solution to the differential equation.

We could choose different constants and graph a few of these solutions:
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The general solution and particular solufions

Solving a differential equation always involves undoing a derivative in some way so there is always an
integration constant. There are an infinite number of these solutions each with a different integration
constant, so this soiution is called the general solution to the differential equation.

Each specific solution with one selected integration constant value is called a particular
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In order to find a particular solution from a general solution we have to have one known x-y pair...this is called
an Initial condition, that must make the differential equation solution true. By plugging the initial condition
into the general sclution to the differential equation we can solve for the integration constant which will choose

the particular solution that goes through this point.
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Slope Fields

For first-order differentia equations, because they can be solved for the derivative on the left side, the expression on the'
right gives the ‘slope’ of the solution curve at any point x,y in the domain:

%= F(x)

If you were to plug in various x,y points fo the right side of the DE and evaluate, the result is the slope of the
solution function at that point. This could be graphed by including slopés at many points, creating what is calied
a slope fi of direction field): -
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The solution curves follow the *flow’ of the siope field line segments

Because the slope field represents the value of the derivative (slope’) of the solution curve at each X,y point
in the domain, the solution curves follow the flow’ of the slope field.

Here is the siope field for the differential equation
we've been working with:
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#4. For the differential equation xy” + ' =0 -
a) Verify that ¥=C, +C,In(x) is the general solution to the differential equation
b) Find the particular solution by using the initial conditions »(2)=0, »(2) m%
Co.
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#5. Given the differentiat equation y’:}- and the iniial condition (1)=8
a) Find the generai selution

b} Use the initial condition to find the particular solution

¢} Use the differential equation to sketch the first quadrant of a slope field for the differential equation.
include lineal elements for every 2 units in % and v from (2,2} to {10,10).

d} Use your calculator to graph your selution curve and add it to your slope field.
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Unit 6-2: Approxzmatrng a solution curve for a diﬁ‘erentlai equation
using Euler’s Method

We can't always find the solution function analytically

Not all differential equations will be in the forms we know how to solve (even after taking & full differential equations
course} We may still need to know something about the solution, though - need to knew the y for given x vatues
in the solution.

When we can' find a solution {o a differential equation analytically, we use numericai metheds to find the
approximate solution - an approximate y value for any given value x for the solution curve, for a specific
solution curve (that is, we need to be given an initial condition).

Euler's Method

in this course we leam ane such method, called Euler’s Method. This method takes advantage of the fact that with a
first-order differential equaﬁon of the fcrm

:f(x,y) ..with an initiat condition given:  p(x, )=,

...we know the initiaf condition is on the solution curve, and we can plug in tis (x, ¥a) info the differential
equation o get the 'sfope’ of the tangent Hine to the solution curve at this point:
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Given: ﬁ=_f x,y) ...with an initial condition given: y(xo):yn

We can move a distance h away in x from the initial condition towards the X value we wish
to know the solution curve y value...

...and use the slope to compute an updated v value:
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Euler's Method

We then use this new paint (x4,y+} to establish the slope for ancther estimate moving closer to the desired point
by plugging this point into the original DE fx,y) function to establish the next slope:

sojutior curve
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This process continues iterativeiy until we are at the desired x vakle, and we then have an
estimate of the {x,3) on the solulion curve at the desired x value (and we trace out an
approximation of the solution curve along the way).



Easiest to understand this through an example...

#1. Use Euler's method to obtain a four-decimal approximation for y(l.S)

Vot = Yewrrem + f’(xosyo) Ax
— on the solution curve for ¥ =0.2xy with y(1)=1 :

Let's set # = Ax = 0.1, taking 5 iterations to reach from x=1 to x=1.5:
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#2. The table gives values of f'(x}, the derivative of a function f(x}. if £(1})=4
what is the approximation to f(Z) obtained by using Euler's method with a step size of 0.57
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Unit 6-3: Solving DEs using Separation of Variables

Solving a Separable Differential Equation by Direct Integration

Solving a differential equation by direct integration requires that when you solve the DE for
the derivative, the function on the RHS contains only the 'x’ variable;

Solving a Separable Differential Equation by Separation of Variables

If you can solve the differential equation for the derivative, but the RHS function contains a
mix of X' and 'y variables, sometimes, you can still solve. First you must separate the
variables - use algebra to rearrange the equation so that each side contains only one
variable (including the differential)...
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Not all differential equations are separable

Separation of Variables works when the differential equation is first-order and when soived for the
derivative, the RHS can be factored into two factors, each containing only one of the variables:

D —g(x)h(y)

...then it is possible o solve By integration.

Segarable DE Non-Separable DE
% = y2e™ % = y+8inx

% =y'ee

=)

Take Differential Equations - 2nd semester of next year's course - if you want to know
more about how to solve other forms of differential equations ?)

You may also be given an initial condition and asked to find the particular solution...
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Unit 6-4: DE Applications - Growth and Decay

Modeling = finding a (differential) equation to model a scenario

The tem 'modeling’ is used fo mean finding a function or equation (in this chapter, a
differential equation) which applies to a given scenario, applying given conditions 1o solve for
any copistants and then using the differential equation and its solution to answer questions
about the scenario. :

Growth/Decay proportion to amount

There are many situations where the rate of change of a quantity (with respect to time) is '
proportional to the current amount of the quantity.

In problems like these, the appropriate differential equation to model this would be;

o dy . N
E =ky ..where k is a constant of proportionality.

Some specific examples...

:kP.

Unrestricted Population Growth: ig;
Continuously Compounded Interest: %’:é =kA

Radioactivity Decay: ii,g* =kQ

Let's take one of these, and solve for the form of the solution to the differential equation: -
dA
Continuously Compounded interest; ——=kA

it

This parficular form: can be solved using Separation of Variables...

‘_fé:kA ©..and solving for A... ]11|A]:kt+ci
> 4 = ™G
—;lidA =kdt A=ee”
. - A=Cé”
,[ ZdA = .[ et We usually have an initial condition: .~ A (O) =4,

ln IAl =kt +C ..and can use it to solve for C... Ay =C0, O =4,

...which gi'ves us the particular solution for the scenario: A= Aoe’”

{for continuously compounded interest, the k has a specific meaning: the annual interest rate)



'‘Proportional to' language

When probiems state that a rate of change is proportlonal to something, we need to c!lstlngmsh between directly

proportional and inversely proportiona:

"The rate of change of a popuiation is proportional to the current population” % = kP
i3
" ' . L . o dy k
The rate of change of the y is inversely proportional to the cube of time" Fr = ;3-
"The rate of change of the population of y is proportional to the current ﬁ@i - ;]‘Z’M
value of y squared, and inversely proportional to the square root of time." dr \/}

Using the differential equation model

Once we have found a differential equation to model a scenario, we can then find the solution
function, and use initial conditions to establish the constants. Then we can use the completed

model to answer other questions about the scenario,

#1. The population of bacteria increases at a rate which is proportional to the amount of bacteria. A
culture initially has 200 bacteria. At f= 1 hr, the population of bacteria has increased to 300
bacteria. If the rate of growth is proportional to the number of bacteria present, determine the

time needed for the bacteria population 1o quadruple.
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Radioactive Decay

Radioactive substances spontaneously eject particles which results in the amount of material left decreasing over
time. Initially, there is much material from which particles can eject so the rate of ejection is high, but as more and
2 more material is removed, there is less material left from which particles can be sjected.

The rate of change of quantity of material with respect o time is propottional fo the
amount of material currently remaining, simitar to population growth...

a0
s ..which has the solution:  Q=0,¢"

But because quantity is decreasing over time, the k constant will be negative, producing radioactive decay.

"halflife” = the amount of time it iakes for haif of the
glantity to be ejected.

2(0)=0, ¥

halflife halfife halflife

Radioactive Carbon Dating

Anr interesting application of this is using radicactive carbon dating to estabiish the age of previously living
materials, in 1950, a chemist named Willard Libby found a way to use the raiio of the amount of
radicactive carbon-14 to ordinary carbon in a living substance to establish the fime when it died.

The action of cosmic radiation on nitrogen in the atrmosphere furns some of the regular carbon info
~, radioactive carbon-14, and the ratio of carbon-14 {o regular carbon is constant and is absorbed by all
= living things, so the same ratio appears in the living tissues. But when an organism dies, the absorption
of the carbon-14 by either breathing or eating stops. The regular carbon remains in the tissues, but the
radioactive carbon-14 decays over time according to a radicactive decay model, and it is known that
the ‘halflife’ of carbon-14 is 5,608 years (the time when only half of the initial carbon-14 remains).

Here is a specific example:

Ex) A fossilized bone is found to contain one-thousandih of the C-14 level found in living
mafter. Estimate the age of the fossil,

State an appropriate form DE: %Q = kO Solve the DE: by separation of variables, solution is: 0 = "
/3

Use conditions fo establish constants:  For carbon-14, half-life=5600 yrs, so Q(5600}=%Q0 -;mg,, = Q™

Now answer the question: age whan quantiity is one-thousandth e =_;.
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Newton's Law of Cooling/Warming -

A slightfy different form DE is found in scenarios where objects starting at ohe temperature are immersed in a medium at
a different temperature.  Assurning the medium is large (the object isn't big enough to heat or cool the medium) than the
rate of change (over time) of the temperature of the object is proportional to the difference between its temperature and
the medium: '

%mk(i”w?;) where 1, is the temperature of the medium
We can solve this using Separation of Variables: dar = kdr
- r-T,
~»~1—dT=jkdt
-7,
|l ~T,|=kt+C,
-7, =G
T-T =C"

#2. A murder victim's body is found by detectives who wish to establish the time of death. When the victim was alive, their
body temperature was 98.8 °F, which as soon as death ocours, the body begins cooting towards the ambient temperature.
This victim was found in-a building with air conditioning which maintained the ambient temperature at a constant 78 °F.
Detectives arrived on scene at 6:00am and found the core femperature of the body to be 84 °F. Core temperatire was
measuraed again at 6:30am and found to be 83.°F. What was the fime of death?

We will use Newton's Law of Cooling which has solution: 7 =T+ Ce®

Let's define 6:00am at {=0 and use hours, to 6:30am is 1=0.5. Then time of T({)_) =84
Qeath will be some negative ime value. r (0.5) 83
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Unit 6-5: DE Applications - The Logistic Growth Model

- The Logistic Equation models population growth in an environment which can
- only support a defined maximum population

We know that, in general, rate of pbpulation growth is proportional to the amount of
population...

ar

Unrestricted Population Growth: 7

=kP

...which produces this solution;. P =Ce"

But more realistically, an environmental system has factors which limit the total
population, things like availability of food and water. In these cases, the most common
way to model population growth is with the following differéntial equation:

dP P
iy . [ P
s -7)

‘The constant L is called the garrying capacity and represents the maximum
population this system can support. By including this factor (which goes to zero as P
approaches L) we are forcing the growth rate to zero as we approach this maximum
population level. .

Sotution: The _Log}stic Equation

) ; ; ; Cisa stant which we
This is the logistic equation: % - W[I_EJ L is the carrying capacity con w
t

17 (maximum population) need an initial condition to
establish (population at
o . ] L time=0}
This is the solution function: Pz——me .
I+ Ce k is a 2nd constant which

we heed a second
condition to establish



We can solve this using Separation of Variables...
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to proceed on the left, we employ Partial Fractions:
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Comparing logistic and unrestricted growth

#1. The wolf population has unrestricted growth in a forest. There are 20 wolves at ¢ = 0 months, and 40
wolves at t = 10 months. What will the wolf population be at time £ = 40 months?

Differential Equation: g_k}? Solution: P =Ce"
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#2. The wolf popuiation in a forest grows in a forest which can only support a maximum of 100 wolves.
There are 20 wolves at { = 0 months, and 40 wolves at { = 10 months. What will the wolf population be
at time = 40 months?

Differential Equation: @-mkp(lmf) Solution: P:L_ﬁ
dt L 1+ Ce
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Comparing logistic and unrestricted growth

restr rowth
:}? =kP Differential Equation
P=Ce% Solution

P= 206.069315£

cairying capacity

Maximum rate of growth _
nrestricted growth logistic growth

carrying capacity

g A -

With unrestricted growth, the rate of growth keeps getting larger and larger so there is no time
where there is a 'maximum rate of growth'.

However, with the logistic growth model, there is a time when the derivative (instantaneous
rate of change) is largest. This occurs when the population is at half of the carrying capacity.

ar _ kP[I - f,)
dt L
2

© Max for i:;ﬁ oecurs when 7 =0. Since Pis a function of t, we must use Chain Rule for the derivative:
s t

[lnf—)k = kP% since & is non-zero, van divide it cut



Slope Field for a Logistic Equation

A slope field for a logistic modei differential equation wili show curves with i increasing population over time
approaching, but not reaching the carrying capacity population.
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The Logistic Growth Model
- . . . P P i ' ;
Logistic model differential equation: “—=kP[1-% L is the carrying capacity
dt L (maximum population)
. Co L
Logistic model solution: P = T Ca® Maximum rate of growth occurs when
1.
P=2L
2

Memorize all of th

is

Logistic problems on the AP Exam are easy to solve if you can reoognlze that the probler is about logistic

growth;

#3. A population y changes at a rate modeled by the differential equation % =0.2y(1000 - y) =

“Q,zj‘?f

where f is measured in years. \What are all values of y for which the popuianon is increasing at a -

decreasmg rate? (,.- M&m&dm)
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#4. Attimet =0 a bacterial culture weighs 1 gram. Two hours later, the culture weights 4 grams. The maximum weight of the
culture is 20 grams.

(a) Write a logistic differential equation that models the weight of the bacterial culture.
{b) Sclve the differential equation.

{c) Find the culture's weight after 5 hours.
~ (d) When wilt the culture's weight reach 18 grams?
(e) After how many hours i re's weight increasing most rapidly?
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