AP Calc BC — Lesson Notes — Unit 5: Integration

Unit 5-1: Antiderivatives, Differential Equations, Applications
Larsen: 4.1 (Stewart: 4.9)

Antiderivatives
If we are given a function, we can find the derivative:
f(x)=3x" ——7(x)=12¢
If we are given a derivative function, could we find the function from which it came:
F(x)= 12—

'‘Reversing' the process of finding the derivative is called finding the antiderivative.

Symbols for antiderivatives
If f(x) = 2%
F(x)=x" is an antiderivative of f(x)
But the following are all also antiderivatives of f(x) :
F(x)=x"+1
F(x) x* =22
F(x) = x*+15,432,167
p=

F(x £

If f(x) =2x
All the antiderivatives of f(x) are of the form:
F(x) =x’+C

The process of taking an antiderivative of f(x) is represented
with the integral sign like this:

[ £(x) )+?
'integration constant'

Compare notation to taking a derivative...

d r
L/ @]=7() [£(x)ax=F(x)+C
%[ ] ='find derivative of j-( ) dx ='find antiderivative of



Antiderivative Shortcuts

For every basic derivative shortcut, we have an antiderivative shortcut...

;[C]—O [oax=C
%[kx]:k [kdc=te+C
d n|__ n-1 n _x"ﬂ =
E[x ]—nx Ix aﬁ:—n+1+C’ (n¢ 1)
%[3’]23" Ie’ dx=e"+C
dr . . " L ) .
E[a ]:(]na)a J-a dx:[mja +C
%[lnx]:l (x>0) Ildx:]n|x\+C

x x
%[sinx]:cosx J-cosxrir:sinx+C
%[cosx]=—sinx Isinxdx=—cosx+C
;x[tanx]—seczx Iseczxdx:tanerC
%[secx]=secxtanx Isecxtanxdx:secx+C
%[cscx]=—cscxtanx Icscxcotxdx=—cscx+C
%[cotx]_csczx Icsczxdx:—ootx-Jr-C
d ; 1 1 ;
E[arcsmx]= — Iﬁdx=arcsmx+C
d -1 -1
E[arccosx]:m I 1_x2d£\c=arccosx+C
d 1 1
a[arctanxlznxZ -[1+x2 dx =arctanx + C
i[arcsecx]z 1 I#aﬁr:arcsccx+c
dx x\/ﬁ xx? -1
%[arccscxlzx\/% Ix ;zl_ldxzarccscx+C
d -1 -1
E[arccotx]= e "-1+x2 dx=arccotx+C



Antiderivative Properties

Some of the properties for derivatives are similar for antiderivatives...
%[kf(x)]:kf'(x) [k £ (x) e =kf £ (x) dx
Lr@te@]-r@e () [(rx)e(x))de=[r(x) e [ g(x) s

...others are different (more about these later)...

%[f(x) +g(x)|=f(x)g'(x)+g(x)+ f'(x) — (Integration by Parts)

(Product Rule)
d —oj d r 4 4 §
E[f(g(X))] =F (g(x)) *g (x) —  (Integration by Substitution)
(Chain Rule)

Examples

Find the most general antiderivative of the function.
(Check your answer by differentiation.)

f(x)=3e" +Tsec’ x Fr(x)=1+x"

Find /.

1

X

Findf  f(x)=3Vx-—, f(1)=2

By



Examples

Findf  f"(x)=12+% -6x+2, f(0)=1, f(2)=11

50. a) Use a graphing device to graph f (x) =2x— 3\/; .
b) Starting with the graph in part a), sketch a rough graph
of the antiderivative F that satisfies F' (O) =1.
¢) Use the rules of this section to find an expression for /' (x)
d) Graph F using the expression in part ¢). Compare with
your sketch in part b).



What is a differential equation?
A differential equation is an equation (contains an equals sign which states
the two sides are equal) but where at least one term contains a derivative.

dy ) d’y .dy
—+5y=¢ —=-3—+5y=6
A solution to a differential equation is itself an equation - an equation
which completely satisfies the original differential equation.

To verify if an equation is a solution to given differential equation, you first
take the required derivatives, and then plug everything in:

Ex) Verify that y =100 +50

is a solution to the differential equation @ =5e%
dt

General and Particular Solutions of Differential Equations

\

Differential Equation: dy 125

General Solution: y=3x*+C

'initial condition': (0,2) | K
(2)=3(0)" +C
=2

3
Particular Solution: y=3x*+2 &»

pie S ot S

p st S S



Application: Physics

Distance (displacement) 5 ([)
d | fa
| Jas
Velocity (magnitude = speed) v(;) = s'(t)
d
l — I jdx
Acceleration a(t)=v'(t)=s"(¢)

In Earth's gravity, acceleration is a constant...

4;):—32% a(t):—9.81'%2

If an object is only being acted upon by gravity (called 'ballistic motion'), then we start
with acceleration and use antiderivatives to find functions for velocity, then displacement.

65. A stone is dropped from the upper observation deck (the Space

Deck) of the CN Tower. 450 m above the ground.

a) Find the distance of the stone above the ground level at
time 7.

b) How long does it take the stone to reach the ground?

¢) With what velocity does it strike the ground?

d) If the stone is thrown downward with a speed of 5 m/s,
how long does it take to reach the ground?



Unit 5-2: Sigma Notation, Area of a Plane Region
Larsen: 4.2 (Stewart: 5.1)

Sigma Notation

In various parts of the course, we will need to 'sum’ things (add them, accumulate)
and one way to compactly represent summation is with Sigma Notation:

d
Ya=a-+a,+a,,+..+a,
1=c

A couple of examples...

3

Z(2k+3):(2(0)+3)+(2(1)+3)+(2(2)+3)+(2(3)+3)

; =(3)+(5)+(7)+(9)=24

(7)=(2°)+()+(#)+(5)

=(4)+(9)+(16)+(25)=54

5
i=2

Sigma Notation Theorems and Properties

The following can be shown to be true for summations in Sigma Notation:

n n n

Y ka,=k) a, Z(aiibi)=iz:;aii-iz;:bi

i=1 i=1 i=1

L) n n(n+1)

Zc':cn ZI'=—
; P 2

n i2_n(n+l)(2n+l) n i3_n2(n+1)2
-4 6 = 4

Example

25
Evaluate the sum: Z(ﬁ —2;‘)

i=1



Finding Area under a function curve using a Summation

Imagine we wanted to find the approximate area under a function curve between
two x-values....

f;////

We could use a summation to add the areas of rectangles which approximately
fill the area. We can use equal-width rectangles, and let the function curve's
value establish the height for each rectangle...

n

Area= Z (individual rectangle areas)

i=1

y ¥

a . b ¥ a b w Ci' b %
...using the lower edge of the ...using the middle of the ...using the upper edge of the
rectangle's x to establish rectangle's x to establish rectangle's x to establish
height (called a lower sum) height (called 'midpoint rule’) height (called an upper sum)

(whether these estimates underestimate or overestimate the area
depends upon the shape of the curve)

Whichever rule we use to choose the x-value, for each rectangle, there is chosen
x-value which we can plug into the function to establish that rectangle's height.

¥y

If we divide the x-distance between a and b into b—a
n rectangle, the width of each rectangle will be:  width =
p -
To find the x value for the /" rectangle,
we start at a and add / widths: . =a+i b-a M
5 n a X )

The height of this rectangle is then...  height = f(x;)

...and this rectangle's area is:  area = height » width = f(-’f.-) & [b — a)
n

We then sum the individual rectangle areas:  Area=Y f(x,)e (b—a)
i=1 n



Finding Area under a function curve using a Summation
An example with a fixed number of rectangles:

Use the Midpoint Rule with n = 8 to approximate the area of the region bounded by
the x-axis and the graph of the function over the given interval.

f(x)=x"+4x, [0,4]

Finding Area under a function curve using the Limit Definition

Of course, this approximation will be more accurate if we include more rectangles!

So we consider including an infinite number of rectangles and do this by using the
previous summation structure, but then taking the limit as the number of rectangles,

n, approaches infinity:

n—yo0 *

Areazlimif(xf).[b;a]

Example: Use the limit process to find the area of the region bounded by the graph
of the function and the x-axis over the given interval:

f(x)=x"+4x, [0,4]



Unit 5-3: Riemann Sums and the Definite Integral
Larsen: 4.3 (Stewart: 5.1/5.2)

Riemann Sums
In the last section, we used summation to find the approximate area under a function curve.

This made sense if the value of the function was always positive in the region we were
considering:

¥

'/ﬁ\ =S (%5°)
/ or for infinitely many rectangles:
e it (52
b

But what if the function curve had negative values for all or part of the region of interest?
y

%

Q

7

In that case, f (x) would be negative so we would have a negative contribution to the
summation from these parts of the region...

?=lim§f(xi)-[b_aj

n—ym < n

...s0 this expression wouldn't necessarily represent 'area’ any longer. It could,
though, as long as we kept the positive and negative regions separate and negated
anything that was negative before summing it into the summation.

A Riemann Sum is a summation defined in a more general way. First, the function curve can
be either positive or negative for different regions in the interval of interest. Second, the
shapes used to find the areas of the subregions no longer have to have equal widths, in fact,
they don't even have to be rectangles (they can be other shapes, such as trapezoids).

Let f be defined on the closed interval |a,b],
and let A be a partition of |a,b] given by
A=X,<x <X,...<X,_, <X =b
where Ax, is the width of the ith subinterval : |x, ,, x,]
If c, is any pont in the ith subinterval, then the sum

z”:f(cl.)Axi, X SeEx
-1

is called a Riemann Sum of f for the partition A.

(The area summations we found in the last section are Riemann Sums, but there are other,
more general forms of Riemann Sums as well.)



Riemann Sums

Example: The values of a function are shown in a table for specific x-values. Evaluate a
Riemann Sum using rectangular partitions, left endpoints, and the specific subintervals given:

x [0.00 050 075 1.00 150 1.75 2.00 y
10

y|432 458 579 614 764 808 8.14 8
6

subintervals: [0.00, 0.75] [0.75, 1.75] [1.75, 2.00] 4
2

o
—_
V)

Riemann Sums using the Trapezoidal Rule

Riemann Sums allow us to use any reasonable shape to estimate the area of a subinterval, and
one that is common and may appear on the AP Calculus Exam is called the Trapezoidal Rule.

The area of a trapezoid is given by the formula b,

I i

area!mp('zmd = _(bl + bz ) h =
2 b
1
y

To use a trapezoid as an area element, we turn it
on it side, so that the 'height' of the trapezoid is
the width of the subinterval, and the 'bases' are =1 (%) b= I r)
the left and right endpoint function values: ~ o




Example: The values of a function are shown in a table for specific x-values. Evaluate a
Riemann Sum using the Trapezoidal Rule for all the partitions included in the table.

x |0.00 050 0.75 1.00 150 1.75 2.00 y
10
y|432 458 579 6.14 764 808 8.14 5
8
4
2
0 1 2

Riemann Sums using the other Geometric Shapes
You can also use other geometric shapes to estimate areas in computing Riemann Sums:

flx)

Ex) Compute a Riemann Sum for the function 1
given by the graph over the interval [0, 3]

—
(L8]

w
=




The Definite Integral

Riemann Sums allow any region with negative f(x) to add negative contributions to the
accumulation. This turns out to be extremely useful, as we will explore in later sections.

For now, we will also use a notation called the Definite Integral to represent a Riemann
Sum with infinitely many subintervals:

b n
[ £ (x)de=1im} 1 (c)Ax,
P =1
Definite Inteqral Indefinite Integral
b
_[f(x)dx If(x)dx
a
...means to compute a value for ...means to find the antiderivative
the summation of the area of the function f{x), including the
between the function curve integration constant.

with negative contributions for
negative f(x) regions.

Result = a family of functions

Result = a number

2
Evaluate the definite integral I(x3 - l) dx for n =4, using right endpoints.
0

2
Evaluate the definite integral I(x3 - 1) dx forn =40, using right endpoints.
0



The Definite Integral
2
Evaluate the definite integral I(x3 - 1) dx using the limit process (for infinite rectangles).
0



Riemann Sum to Definite Integral

3
Let's write out the Riemann Sum used to evaluate the integral If‘ dx
using the limit process: 1

: B—LB 3-1_ 2 lim > f(x,)Ax
width Ax=U =3_=_ n-»m; ( )
n n n %
. 2y 2
o Im ) [1+i—| =
X, =LB+iAx=1+i— =1 njn
n

L2 2y
lim — 1+i—
im 31417

3 3 3 3
limg[[]-l-ng +(1+2§) +[1+3g) +____+[1+n3]]
i ot / | n n n n

3 3 3 3
limg[[nz) +(l+i] +[1+§] +....+[l+§):|
Ny yy H n n n

Sometimes the AP Exam will give you a Riemann Sum written out like this, and ask you to
figure out what definite integral it represents.

7= f(x,)=(1+if')3

UB-LB 3-1 2

3 width Ax= =
jxs dx n > n n
] x,=LB+iAx=1+i—
n
3
Here's what you need to find... flx)=2, f(x,)Z(lJrig]
n

3 3 3 3
1imz[(1+z) +(1+i) +(1+EJ +....+[1+2—"]
n—o0 py n\n n n

This is the lower limit of integration (LB)
UB-LB

n The parentheses represents the integrand
function...here, it is cubed, so

f(x)=%
Let's try one...find the definite integral which the following Riemann Sum
evaluates:

2 2 2 2
1iml{[3+lJ +[3+EJ +(3+§] +....+[3+EJ}
A% 1 n n n n

This is the width Ax=




Properties of the Definite Integral

43. Write the given sum or difference as a single integral in the

form J.jf(x)dx .

J, fdz=0 {2 7 ()ae [ (x)ds [ 1 ()

[ fdx=—[ F(xax

[ fGdx={ f@adx+ [ fx)dx

where c¢ is between @ and b
b b
[, @dx=c| f)dx

[[f@dr+g@]dr = [ fG)dv [ o)

If f(x)<g(x)onla,b], thenj.f(x)dxsj'g(x) dx

17. Express the limit as a definite integral on the given interval.
n

1imz[2(xj ) —s5x JAx, [0,1]

n—o “
=1



21. Use the form of the definition of the integral given in Equation

3: jjf(x)dx: 1imﬁ:f(x1.)ax

n—@

2
to evaluate the integral: Io (2 —x )dx



Unit 5-4 day 1: The Fundamental Theorem of Calculus and examples
Larsen: 4.4 (Stewart: 5.3/5.4)

The Fundamental Theorem of Calculus

Start with two seemingly different ideas (that use the same notation)...
b

[ f(x)ax {f(x)dx

Antiderivative of f(x), F(x) Area under f(x) curve from x=a to x=b

Consider a car traveling at a constant 60 mph:
v (mph)

v (mph)
60 — 60
t(h t (hrs
s : (hrs) 0 T (hrs)
area of rect =v(t)- At area of rect =v(1)- At
=60 765 | - 60 725 br
hr hr
= 60 miles =120 miles
= distance traveled = distance traveled
Srom 01 hrs Srom 0—=2 hrs

Area under the velocity curve = the total (accumulated) distance traveled

But we also know that the velocity function is the derivative of the distance
(displacement) function... v(1)=5'(e)

...and therefore the distance function is the antiderivative of the velocity function.
s(1)=[v(e)at
s(t)=V(2)

the total distance traveled = antiderivative of velocity

antiderivative of the velocity function

Since the total distance traveled = area under the velocity curve
and the total distance traveled = antiderivative of velocity

Area under the velocity curve = Antiderivative of velocity
1

[v(t)ar=v (1)

0

And if we wanted to find the distance traveled between time t=1 and t=2
we could subtract one area from the other:

v (mph) v (mph) v (mph)

80 B0 60

thrs) Q2 Eibrs)

P—
[3%]
-
=
= 1
wn
-
o
|

v(t)dt =V (2)-V(1)

O oy 1
=
Y e
e N
~—
S5
|
=
~——
Y]
~—
<
—
~
—
&
Il
~
—
—_—
—
N S

The accumulated distance depends upon finding the values of the
antiderivative of velocity (distance) but only at the ends of the interval.



The Fundamental Theorem of Calculus

This idea occurred to two people: Issac Newton and Gottfried Leibniz who further showed that
this idea, that the area under a function curve over an x-interval is equal to the antiderivative
evaluated at the endpoints, is generalizable to all functions, not just constant functions...

v (mph)

BUI 2
[v(£)de=v(2)-7(1)

e

f(x)

O == o= o s

b
I
1
H
a

...and is called the Fundamental Theorem of Calculus (part 2).

A quick example

Evaluate: j(x2 S+ 2x) dx
2



Proof of The Fundamental Theorem of Calculus (Part 2)

If a function /" is continuous on the closed interval [a,b] and F
is an antiderivative of /° on the interval [a,b], then

[/ ()= (8)- ()

Proof:
Let A be any partition of [a,b]: a=X, <X, <X,....<X, , <X, =b

The right hand side can be replaced with the endpoint values, along with the values
between these endpoints in the interval, each one added and subtracted back off...

F(b)-F(@)=F (%)~ F (%, 1)+ F(%,1)~ F (%0 2) + F (%,2) - F ()4 F (%)~ F (x,)
Regrouping into pairs in order...

F(b)—F(a):F(xu)—F(x"_])+F(xn___l)—F(xﬂ 5 ) o +F(x,)-F (x,)
This can now be expressed as a summation...

F(B)=F (@)= [F(x)=F (3]
By the Mean Value Theorem, we know that there exists a number ¢; in the /" subinterval such that

)= F(x,)—F(x.)

X; =X

therefore  F (x,)— F(x;_l ) = F'(C;) = (x; — X )

F'(c

i

Because F is the antiderivative of £, ¥'(c,)=f(c;) and you define Ax, =x, —x, . then...
F(x)-F(x.,)=f(c)Ax
From earlier: F(b)—F(a)= zﬂ:[F (x)-F(x)]
i=1

F(8)-F(@)=3[/()Ax]

This result tells us that by repeatedly applying the Mean Value Theorem, you can always
find a collection of c; values such that the constant F(b) - F(a) is a Riemann Sum of fon
[a,b] for any partition.

Now taking a limit to apply infinitely many subintervals:

F(6)~F(a)=lim > [ /(c) Ax]

F(b)—F(a):if(x)dx




The Fundamental Theorem of Calculus (part 1)

So if the previous theorem is known as The Fundamental Theorem of Calculus
Part 2, which is Part 1? To see, let's return to our driving analogy...

We said if we had a function representing velocity (derivative of distance) the area
under the curve represents the accumulated distance traveled from time t = 0:

v (mph) v (mph) v (mph)

60 60 60

PO = o e

t (hrs) e —1. (hrs)

t (hrs) 0

0 1 0 1
If we leave the ending value as a variable, x, then we are producing a function of time (with
variable x allowing us to set the stop time later) and this function gives us the accumulated
distance from zero to that time, x.
2 x

jv(x)dx [v(x)dx [v(e)ar

q 0
0 = SR
= (1)-7(0) =F(2)-¥(0) =V (x)-7(0)
=5(2)—-s(0
=5(1)-5(0) )0 =5(x)-5(0)
a number representing a number representing a function which gives us
distance travelled distance travelled distance travelled for any x

The resulting function is sometimes called an accumulation function.

Although we've shown this for a constant velocity function, this can be shown to be
true for any function. Conceptually, this means that if you have a function which
represents the derivative of a quantity (how it is changing, for example, over time),
then integrating that function from a constant to x will give a function for how that
guantity accumulates.

For example, if you have a water tank which is leaking water and rate at which water is

leaking is changing over time: R (¢)

...then you could create a function for the total accumulated amount of water leaked out

by time x using: x

accumulated leaked water (x)= I R(t)dt
/]

One final point about the FTC part 1: because the function we are integrating must

represent the derivative of the quantity we are accumulating, and doing so produces
a function of the original quantity, this means that the integral and the derivative are

operating as 'inverse operations' - undoing each other's effects:

4frwal-r6

...and this is the way that the Fundamental Theorem of Calculus Part 1 is often written.



The Fundamental Theorem of Calculus Summary

The Fundamental Theorem of Calculus Part 1

then, for every x in the interval

2701

If a function /" is continuous on an open interval I containing &,

The Fundamental Theorem of Calculus Part 2

If a function f is continuous on the closed interval [a,b] and F
is an antiderivative of /* on the interval [a,b], then

f[f(x)dx:F(b)—F(a)

The Net Change Theorem

how it is used...

Jo@a=a()-a(a)

Given a function for the
derivative of a quantity,
produce a function for the
accumulation of that quantity
(result is a function).

Given a definite integral of
a function, use the
antiderivative of that
function at the endpoints to
evaluate the integral,
instead of Riemann Sums
(results is a number).

or net change, of F(x) on the interval [a,b]:

If F'(x) is the rate of change of a quantity F (), then the
definite integral of F'(x) from a to b gives the total change,

iF'(x)dx:F(b)—F(a) "net change of F'

Examples



Examples

Evaluate the integral and interpret it as a difference of areas.
[lustrate with a sketch.

572
I sin x dx

z/4

Evaluate...

g(x)=[rdr g(x)=[3r di
. 3



Examples

Find the derivative of...

x]

F(x)= jcost dt
%

i_“cosz‘ah' ij lzdt
dx °, dx g 1+t

Let g (x) — I: f(;)d; where f1s the function whose graph

1s shown.
a) Evaluate g(0), g(1), g(2), g(3).and g(6).
b) On what interval 1s g increasing?

c) Where does g have a maximum value?
d) Sketch a rough graph of g. F

F(x)=[5Intdr
0




Examples
Use Part 1 of the Fundamental Theorem of Calculus to find the

derivative of the function.

g(x)= [ VLvardi y={sintdr

Find the interval on which the curve is concave upward.
x 1

=| ———dt
Pl 2



Examples
Let g{x)= I: f(#)dt , where fis the function whose graph is shown.

a) At what values of x do the local
maximum and minimum values of g
occur?

b) Where does g attain its absolute
maximum value?

c¢) On what intervals 1s g concave
downward?

d) Sketch the graph of g.

(0 ifx<0

Lot f(x)= x if 0<x<1
2—-x if1<x<2
0 x>2

and  g(x)=[ f(t)ar

a) Find an expression for g(x) similar to the one for f{x).
b) Sketch the graphs of fand g.
c) Where i1s /' differentiable? Where 1s g differentiable?



Unit 5-4 day 2: Net Change Theorem, Average Value of a Function
Larsen: 4.4 (Stewart: 5.3/5.4)

The Mean Value Theorem for Integrals

If f is continuous on the closed interval [a,b], then there
exists a number c¢ in the closed interval [a,b] such that

[ £(x)de=7(c)(5-a)

b

For any definite integral over an interval, there is some x-value in the interval where a rectangle of
height f(c) times interval width has the same area as the actual area under the curve in the interval.

Average Value of a Function

y

a

From the previous theorem, at this value c, the height of the rectangle with the same area as the

area under the function curve is f(c). We define f(c) as the average value of the function over
this interval, and can compute it as follows:

If f isintegrable on the closed interval [a,b], then the
average value of / on the interval is

1 b
lue = —— dx
average value = If(x)

a

Examples

A liquid flows into a storage tank at a rate of (180 + 37) liters per minute. Find the amount of liquid
that flows into the tank during the first 20 minutes.



Examples

Find the average value of f (x) =x"—3x on the interval [1,4]

The velocity function, in feet per second, is v(t) = -1-12 1=<t<5
for a particle moving along a straight line.

(a) Find the displacement over the interval.

(b) Find the total distance that the particle travels over the given interval.



Unit 5-5: Integration by Substitution
Larsen: 4.5 (Stewart: 5.5)

Integration by Substitution

Some integrals cannot be evaluated by using the basic integration formulas, so we
need other integration techniques. One of these is integration by substitution which
is based on the Chain Rule.

Derivative using Chain Rule Integration by Substitution

y=(x2+5)4 useful when one function I4(x2+5)3 Bl
b _., Is’inside’ of another N —_
u=x*+5 y:u4
3
%:216 gzz%ﬁ u=x"+5 4_[.:: du
—=2x 4l =gt
& dvidu dx [41' }C
dx  du dx du=2x dx S eC
9 4
& 4u3(2x) (x +5) +C

1) define the 'inside’ function to be u.

2) Find du/dx and solve for du to get a
‘toolkit’ with du and u.

3) Substitution all expressions with x and
dx in the original integral to obtain a new
integral using u as the variable.

4) Integrate, then resubstitute u to use the
original x variable.

Examples

_[ x (1 -x* ) dx

One of the most common u-
substitutions involves quantities in
the integrand that are raised to a
power (as in this example). This is
given the special name 'General
Power Rule for Integration’. More
generally, this procedures is knows
as 'Integration by Substitution’, 'u-
substitution’, or 'the Substitution
Rule for Integration’.



Using Integration by Substitution to evaluate Definite Integrals

You can also use Integration by Substitution when evaluating definite integrals. There are two
variations on how to handle the limits of integration (both a valid):

J‘ﬂﬁ %1119 d /3 s1n @ 4o
u=cost j >
© cos @
u sind
L 2
% sind o ‘¢ sin@
I (cus 9) du =—sin 0d@ I 7 do
) ¢
. _sinfdO=—du o (cos0)
% 7
[usino do [u?sinodo
0 0
g=x/ You can convert the limits of
S integration into u values as ___, 0=0 — u=cos(0)=1
- f udu well, and stay with u for the
0=0 rest of the problem... 9=:r3 —> H=WS(%]
§=7
{0
0=0 _ _2d
= | :|9% U U
1
ul ...or you can ignore the limits Y
-0 <«==Of integration at first, _[(_1)11 I]] ’
1 17 complete the integration and ;
resubstitute into terms of x, 1 P!
| cosé |, then substitute in the original -
B 7 x limits of integration. U




Examples
'[1;’2 sin”' x

sin.x .
I—,d-\' 0 2 ax
1+ cos” x 1—x
Evaluate J-- (,\' +3 ) Va4 — 1% dy by writing it as a sum

of two Integrals and interpreting one of those integrals in terms
of an area.



J- cos xcos (sinx ) dx Iq in’ xcosxdx

IS ec xtan x+/1 +sec x dx



Unit 3-6: Other Integration Techniques
Larsen: 4.7
Other Integration Techniques

Some integrals don't resolve using basic antiderivative shortcuts or integration by
substitution immediately, but you can do some additional work to put them into a form
where these techniques will work. Here, we examine a few such techniques.

Inverse Trig forms with constants

We've memorized this form: J 5 dx=arctanx+C

1+x

1
But what if we need to integrate this: I > dx
4+x

It can be shown that the following are true...

IL = arcsin [E] +C
Jat —u? a

“' zdu 2—larctan[ )+C’
a+u a a

! Ju IJ
= —arcsec +C
fo s

(We don't usually use the cosine, cotangent, or cosecant forms because they are just the
negatives of these).

We can update our table of antiderivative shortcuts to memorize...



Updated antiderivative list

d

:EKFO

d

2 fic] =k

d [ n ] n-1
E_x _:n.x

d B x_ x

E_e _:e

%:ax: =(lna)ax
2 [nx] =1 (x>0)

E[sinx]:cosx
%[cosx]:—sinx
%[tanx]:’se{:2 X

d
a[secx]:secxtanx

d

Z[cscx] =—cscxtan x

% [cotx]=—csc® x

— [arcsin x] = Jl_z
4a [arccos x]=

\/l_x

1

E[arctan x] - 1+ x?
4 [arc sec x] = L
dx xx? -1
4 [arcesex]= —
dx xx -1
i [arc cot x] = = s
dx 1+x

[ x" dx =

(0dc=C

(kdx=hx+C

1
Iﬂ-l—

C -1
n+1+ (n=-1)

Ie’dx:e‘+C

[ a* dx=(L)a’ +C
’ Ina

1

—-dx=h:l|x‘+C

R

sin x dx

cscxcot x dx =

csc’ x dx

cosxdx=sinx+C

=—cosx+C

[sec” x de =tan x+C

secxtanx dx=secx+C

—cscx+C

=—cotx+C




Splitting into multiple integrals

Sometimes, u-sub won't work as initially stated, but we can split the integral into multiple
integrals:

x+2

Va-x°

dx

Completing the Square
An old algebra technique is also sometimes useful...completing the square.
If you have a quadratic which is not factorable, like... x*> —4x+7

...you can perform a 'complete the square' procedure to make a portion a binomial squared:

1
This can sometimes help with integration: ,[27
x°—4x+7



Trig function with an argument other than 'x’

Sometimes using simple trig identities can help with integration...

Itan(Zx)dx Ix3 tan(x4)dx

1
One last example from the textbook: ——dx
p J' Helx _1



