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AP Calc BC — Lesson Notes — Unit 4: Integral - Evaluation

Unit 4-1; Antiderivative evaluation using "shortcuts”

Antiderivatives
if we are gi\)en a function, we can find the derivative:
F(x)=3" —— f(x)=12¢"

If we are given a derivative function, could we find the function from which it came:

fi(x)=12%" ——
‘Reversing’ the pracess of finding the derivative is called finding the antiderivétive‘. '

Symbols for antiderivatives
if fx)=2x
F(x)=x" is an< antiderivative of f (x)
But the following are all also antider_ivatives of f (x) :
F(x)=x"+1 |
F(x)=x"-22
F(x)=x"+15,432,167

2
Fl)=x+2
(x)=x +,7

If f(x)=2x
All the antiderivatives of f (x) are of the form:
F(x)=x+C

The process of taking an antiderivative of f(x) is represented
with the intedral sian like this:

If(x)dme(x)+§]
‘integration copstant’

Compare notation to taking a derivative...

-i;[f(x)]:f'(x) | Jr@)a=F(+c
d |

e ] = find derivative of' ‘ j ( )dx = find antiderivative of



Antiderivative Shortcuts

For every basic derivative shortcut, we have an antiderivative shortcut. .

Z1c)=0

2 [k =+
Pl
“e]=e
%[f J=(ma)a
d

zxw[lnx]mi« (x>0)

— [sin x]=cosx

%[cosx]=wsinx

—gx—[tanx]mseczx

i sécx =secxtanx
= Jseca]

E;[cscx]z—mscxtani

v | COR X] = 50" 2

jﬂézwc

Ikdx:k:wc ,

xn+1 ’ v
Ix”dx: +C (n#!r——l)
: n+l

Ie‘dxme”%"c

s geef L
[a dx..(mjawc
I}«c&_min]x[»i»(l

x
jmsxdxmsin.x+c
Isinxdx=-c03x+C
Iseczxdtwtanx-f-(:
!sccxtanxdx:secx-t—(:
Icscxcotxdxz——cscx+'C

Icsc’ x dy = —cotx+C

1 )
dezatcsmx—%-C
de=arccosx+C
I»\/l —x*

I 1 'ckwafctanx-&-(?
1+x? :

- ¢ = arcsecx +C

".x\/x 2y

I -1 dx =arccsex+C

xvx® -1

dx=arccotx+C

'[1+x



Antiderivative Properties

Some of the properties for derivatives are similar for anfiderivatives...

2k s @]=k5)
L[ r@e@]=r@e )

[z f(x)dxmkf fxa&
[(rx)xeg())ae=[r(x)de+ [ g(x)ae

...others are different (more about these later)...

%[ S(x)g(x)]=1(x) g (x)+ g(x) o f(x)  — (Integration by Parts)

(Product Rule)

. gx“[f (g (x))]}*f '(8 (x)) og (x) — (integration by Substitution)

{Chain Rule)
Examples

#1. Find the antidetivative:
I (3e" +7sec’ (x)) dx
@2 {tady) 4+ < _5{

#2. Find f{x) given f"(x):
f”(x)ml-t—x%
£ = (X" dx

26y = x+ Fx¥ +e
£00= fmﬁ‘ &“‘M‘)dx
ez a2 +EYR)x +*C>«<+D{

if yout are glven an 'X-y pait', you ‘can solve for the integration constant

#3. Find f(x) given f'(x):

FE)=RE- 1)1

—~dfy.

%(/x) ~3x 7~ X

Fbo= j (3x2—x Mex

é@ = 32 HC
Lp=2 X He_5 24

2 = 209 '3’(2,2(,)12%C
7 = .2»“2“5""‘3 7 eEE

ot TR




if you must integrate twice, you'll need two 'x-y pairs’ to find both constants

#4. Find f(x) given f"(x):

SpSfen
f'(x)=127-6x+2, f(0)=1, f(2)=11 ) Lo = (o) >+l +( (4D = |
£ = 5[ (1p=atZ)AxX /()= () ()" LD =1
0z ST rT e { 12a2eap =zl 2=, CFT
ot KX Cn D (o712
£ x“ X j
Application: Physics
Distance (displacement) § ( t)
ERRIC
Velocity (magnitude = speed) v(t) = s’(t)
l5 1«
Acceleration ‘a(t) 2 v’(t) =" (t )

in Earth's gravity, acceleration is a constant...

a(t‘) e »~3_2 -% a(l) s D 81 %2

It an object is only being acted upon by gravity (called ‘bailistic motion'), then we start
with acceleration and use antiderivatives to find functions for velocity, then displacement.

#5. A particle moves along the x-axis such that the velocity in cm®/sec at
time fin seconds is given by v(#) =3¢ ~2¢+4

i the particle is at x = 3 when t = 2 seconds, what is the function for the
position of the particle, x(z) 7

Wi = Sylhat = | (34249 dt
)lb) = A3 —LFHtEHe
2 = (2 ) HUDHC
2o 124C
(="

Eé) P8 =7 (




YN

#6. A stone is thrown downward with a speed of § m/s from the top of a

450 m tall tower. /I‘
a} Find the distance of the stone above the ground leve! at time £ ey
b) How fong does it take the stone to reach the ground? .
¢} With what velocity does the stone strike the ground? }
4) alk)= -8 I LS S
| (0,2) | vz
e ; St o5 ’ - -
V)= Sa b = §-47de 2~ 18 EC 778 €

o)z —5 mfs
5 ) 4 P L -5
Vi) = —~4.8L —S -
s = Svibdg > [~ -l = —HALTTEAD
slol z45e '
yso =49 [0) -SLID 2D ey

'W&»%—w&@ ,;
‘ n sl)=o eré»[-:é -:'ﬁ.of'?iaﬂ

g) o 7/@«’!4&? whre.

— 9,8 (4.0865763) =5~

¢) v(4086163) =
= [Fauod e )

o (AT

|
‘ URPIRPRINRIR IS S
i




Unit 4-2: Riemann Sums and the Definite Integral

Sigma Notation

N In various parts of the course, we will need to ‘sum’ things (add them, accumulate)

and one way to compactly represent summation is with Sigma Notation:

o
DU =, A+ Gy ot

gy

A couple of examples...

i(‘zk—;-i;);(2(0)+3}+(2(1)+3)+(2(z}+3)+(2(3)+3)

B =(3)+(5)+(7)+{9)=24

2(1)=(2)+(3)+(#)+(5)

- =(4)+{9)+(16)+(25)=54

Finding Area under a function curve using a Summation

Imagine we wanted to find the approximate area under a function curve between

fwo x-values....
¥

/i

o ' B

Wa could Use a suitanation to add the areas of rectangles which approximately
fill the area. We can use egual-width rectangles, and let the function curve's
value establish the height for each ractangie...

AmawZ{fndividual rectangle arem} {whather these estimates underestimate or overestimate the area
Fuk

~ depends upon the shape of the curve)
¥ : » ¥

x

| I b Ve b
...using the lower edge of the . using the middle of the «.using the upper edge of the
ractangle’s x to establish Jectangle's x to establish reclangle's X to estahlish
height {called a left sum) height (called 'midpoint rule'} height (calied an fdght sum}



Finding Area under a function curve using & Summation

Whichever rule we use to choose the x-value, for each rectangle, there Is chosen
w-vatue which we can plug into the function fo establish that rectangie’s helghl,

. y
If we divide the x-distance between a and b into idth b~a
n rectangies, the width of each rectangle will be: Wi v n
To find the x value for the rectangle, we X m a*_;(ﬁfﬂ)
start at @ and add F widihs: "
For the left side x, 7 starts at 0. For the right side x, / starts at 1. ] PO *
]

(We would need a more complex expressio to find the middle x.)

The height of this rectangle is then...  height = £{x,)
...and this rectangle’s area is:  area = height « width = § (xi) {b:a)

" weste N N N “
We then sum the individual reclangle areas: Areas=)_ f (x_g}»(b “‘] complicated notation for a simple ideal
’ 12 n

#1. Use the right side of the rectangles with n = 4 to approximate the area of the region
bounded by the x-axis and the graph of the function over the given interval.

f(x) =x"+4x, [0,4]

ideval ke A AKX moares

[ol l_j ’ 5 | - s
D2l 2 L = *
[2,3] 3 zl =z
. = 3t

[397 o v

aea xz [5) 4 0 +200) +32] s Fo
\

Finding Area under a function curve using the Limit Definition
Of course, this approximation will be more accurate if we include more rectangies!
So we make the number of rectangles infinite by taking the limit as the number of rectangles,

n, approachas infinity:
Area=1mY f(xl)o(b;a)
e F3

The Fundamental Theorem of Calculus (which we'll learn more aboug later) shows
that this fimit is actually the same as a definite integral:




What If f{x) is negative?

if a function is negative for some parts of the interval, we need to decide how 'to handle that situation.
¥ ;

Usually, we want the negative part to 'cancel’ out part of ihe positive part of the sum, and this is how we interpret
negative #x) when the calculation is representing & definite integral,

if, for some reason, we instead want the physical area, we need to break the function up so we can calculate the

positive and negative areas separately and ‘negale’ the negative areas so they become positive areas fo add to the
total area.

Riemann Sums

. )
When we use shapss to compute an area for a curve we call the approximate ares a Riemann Sum.
Here is the formal definition;

Let § be defined onthe closed interval [a,b),
and let A be a partition of {a,b] given by
A=Xy <X CXpooe <X, <X, =D

where Ax, is the width of the ith subinterval : {x, ,, x,
If ¢, is any point in the ith subinterval, then the sum

gf(ct) Axh Kig 'SC’, Sx,
0
is called a Ricioann Suoxof f for the partition A,

Some things to note.  » The function curve can be sither positive or negative and negative eancels positive.
+ The shapes used dor't have to have equal widths.
« Infact, the shapes don't have to be reclangles.

#2. The values of a function are shown in a table for specific x-vaiues. Evaluate a Riemann Sum
using rectangular partitions, feft endpoints, and the specific subintervals given:

NSRS
x§0.00 050 075 1.00 150 175 2.00 y
10 ¢
¥y §432 458 579 614 764 B.08 B.14 8
8
subintervals: [0.00, 0.75] [0.75, 1.75] {1.75, 2.00] 4
2
x
0 1 2

Mewal  x £l) dx = g
[o,0a%) o  yza.oas = 32
[‘9{’*’?;{ 5] oas smq ¢ ) = 531
[gg:ﬁ»ﬂj LA o3 025 = A0

avea 2 [(32Xon) +(spe)(1) w{fet)2p) = 11.0F



Riemann Sums using the Trapezoidal Rule

Riemann Sums allow us to use any reasonable shape to eslimate the area of & subinterval, and
one that is common and may appear on the AP Calculus Exam is called the Trapezoidal Rule.

The area of a trapezoid is given by the formula

areaq,

ragezeld =

1 ,
E(bi + bz)h

To use a frapezold as an area element, we tum it
on ft side, so that the ‘height’ of the trapezoid s
the widéh of the subinterval, and the ‘bases’ are

: i ) ; ¥ f (xi,ﬂ;g&é}
the leff and tight endpoint function values: -

#3, The values of a function are shown In a table for specific x-values. Evaiuate & Riemann

Sum using the Trapezoidai Rule for ail the pariitions ipcluded in the table. 10
Xx{000 050 075 1.00 150 176 200
y{432 458 579 6.14 764 BO8 814
[ '”} 1,55 \az =8 o5 MM?Z’L;
[o7,075) H.58 5P 4D ) 24675
[oar,1]  swa bl 9T KLl
[1,15] 6t FY o5 3,445
[1s,p5) 60 898 o> LUS
[asz] 898 &t o> 2T -
" areq 22 sur = 12,45

The Definite Integral
Riernann Sums allow any region with negative f (x) to add negative contributions to the
accurnulation. This turns out fo be exdremely useful, as we will explore in fater sections,

For now, we will also use a notation calied the Definite Integral to represent a Riemann
Sum with infinitely many subintervals:

[ £(x)e=1im> £ (c)

Definite Integral indefinite Integral

b.

I f(x)d ' jf (x)dx

&®
..means o compute a value for _.aneans fo find the antiderivative
the summation of the area of the function i), including the
ketween the function curve integration constant.
with negative contributions for
negative fix) regions,

| Result = a tamily of functions §

I Result = a number I

of N> o ®




The Definite Integral

7
5#4‘ Approximate the value of f x*dx usinga right Riemann Sum with 3 equal-size intervals.

. %'
WtMﬂq:“lﬁm Z

lMGV\Iql Yo f};@ . A)( - e
L;)l;ﬂ ¢ 2. 23

[-y’)z“ = Zf ™ N .gm
C%)-er‘l"‘l N i

A ‘\ o o
(g = [ 18 450+98] = 66
|

Properties of the Definite Integral
¥ . : |
[ F(ode=-{ fGax
[ fdx=0

[ 70 [ s [ o

where ¢ is between ¢ and b
[ Gods=cf] fGoa
[reae g@)de= [ feaxs [ gxrax

If F(x)sg(x)onla,b], !ﬁm! f(x)drs I g(x)dx



N

N
7N

Using properties and geometry {o evaluate definite integrals
Evaluate the definite integrals using the graph of f{x)

#1. if(x)dx

Mdews| ”&Vfﬂ_——
~ ‘“":\ib"ﬂ @%{2}[?) = |

[-%7] e y(z) = —&T

2
%,Hﬂak-:: — =z

#2. ?j(x)a‘it
ol arer
ﬁa/zj C'P’f;ftf@) ="

[, $UDNE=T

A
( £dyx = 4T

-4
. i

#3. j{f(x)dx = "‘,((é—@(‘ﬁ)d)c = "'[‘('ﬂ') =7 -\

important! In order to use geometry to evaluate a definite integral the lower limit of integration must
be lower than the upper fimit of integration. If they are reversed, use properties to reverse them.

{Technically, this isn't called a Riemann Sum because the areas aren't all being found using a height
times a width and the result is an exact value, not an approximation).



TN

Finding the Definite Intervai a Riemann Sum is approximating

We solved this problem previously...
7

Approximate the value of sz dx using a right Riemann Sum with 3 equai-size intervals.

interval X fix) ™ Ax = area
[1, 8 3 (B * 2 = 18
3, 61 5 (B * 2 = 50
5717 7 @y * 2 = 98
166

T .

[x* ax~166

1

s @) o2+(52+(7)'2]

=213 2"?‘ 5 12'3“ 7 ? structire => integrand
(B +(y+()7] o .

~2{(1+z~1) +(1+2:2) +(1+23)"]

y.r"' ne=1 ’x';i!” 2 n=3 "
width =272 =771 s a S
" 3 wielth
* 22[(; +2n)' |
mj;

/ structure = iitegrand
wikdth &

#4, iz{{w%}ﬂ approximates what definite integral?
s

l> a “:.’-:v’“ o

;4 _ _' -2
@w?. :f%:-;ﬂ» - 2 ot?l/n—},; =
b—t=4
b=

3) (L) =2 X*

vy £ 2[h 27 =

w==1\ !




Riemann Sum to Definite Integral
What If there were an infinite number of rectangies?

N TOE ) A T O AT Y PO o L
#5, Im— 11— +] 14 | 4 b | Aok I e is equivalent to what definite integral?
oo gy .

n n M n

structure = infegrand

2l 2 [, 4Y (.. 6Y 2nY |
ﬁm—«[[l+-] +(1+-) +(1+—) m.w(ﬁ-—e”
neyo g » n on % ny |

:

]

¥

%
[}
%
4
beg 3

¥
%
i
1
\
WLl 552 s a
n

thiy wust be widih simes »

B T SO N AT T A o B )
#5 Hm—| 14| 4] b | A4 D | b B is equivalent to what definite integral?
Hedits gy ] _ ‘

n n n
D a = |

TR L Ry~ b=t =2
wivhty = = —

3) (4% 7 ¥
3
i) S = {xéd&

!

Find the definite integra! which the following Riemann Sum approximates:

2 2 2 ~2
#6. ﬁml[(3+l) +(3+3) +[3+§) +‘.‘.+(3+2)}
Bob gy A 7 #n #

) a=3

-+ z
57 [;4/;(() —7 K

4
() A & z,?g;»%c



Unit 4-3: The Fundamental Theorem of Calculus -
Evaluating Definite Integrals

N The Fundamental Theorem of Calculus

Start with two seemingly different ideas (that use the same notation}...

[r(x)a J’f x)dx
Antiderivative of f(x), F(x) Area under [ {X) curve from x=a to x=b
Consider a car traveling at a constant 60 mph:

v {mph} o {miph)

ol {hres)
aren of vect = (£} bt area of reet = v{t} M
mw’”"” L =60 208 5 gy
ey
5 ) mia!’es = 120 miles
= efistomee fraveded w diitance iraveled
Jrow 01 hrs From b2 hary

Area under the velocity curve = the total (accumulated) distance traveled

But we also know that the velocity function is the derivative of the distance
(displacement) function.

N ) v{t)=5(1)

..and therefore the distance function is the antiderivative of the velacity function.
s(t)= Iv(t)dt
v(t) =V (t)

the total distance traveled = antiderivative of velocity

antiderivative of the velocity function

Since the tolal distance traveled = area under the velocily curve
and the total distance traveled = antiderivative of velocity

Area under the vaicmity curve = Antiderivative of velocity
j'v(x)dt V(1)
And if we wanted to find the distance traveled bewew et t angd =2
we could sublract one area from the other

v {mph) ¥ {mph} v {mph)

L

2 f v(t)dt =V (2) » _pr(z)dt =V (1) j?'v(z}dmv{z)wy(:l)

The accumulated distance depernsds upon finding the values of the
antiderivative of velocity {distance] but only at the ends of the interval.



The Fundamental Theorem of Calculus

This idea occurred fo two people: Issac Newton and Golifried Leibniz who further showed that
this ides, that the area under a funclion curve over an x-interval is equal 1o the antiderivalive
evaiuated at the endpoinis, is generalizable fo all functions, not just constant functions. ..

v {mph)}

[v(e)d=r(2)-r ()

1

t (hrs)

[ 1) = (8)- (o

X

..and is called the Fandamamai Theorem of Calculus (part 2},

Examples
4 3
#1. Evaluate j(x2+2x)dx #2. Evaluate jxsd‘x
2 -]
P
P2 Yy [ X7
) Z &
N Y ‘
x>, 2 j [45) ! [w




Proof of The Fundamental Theorem of Calculus {Part 2)

If a function £ is continuous on the closed interval [a,b] and F
TN is an antiderivative of /' on the interval [a,b}, then

[£()ae=r (8)-r (o

Proof.
Let A beany partition of [a,bl a=X, <X, <X,...<X, <X, =b

The right hand side can be replaced with the endpoint values, along with the values
between these endpoints in the interval, each one added and subtracted back off...

F(b)-F(a)=F(x,)~F (x,3)+ F (2, )~ F (5, )+ F (2,3 )= F ()4 F ()~ F (3%,
Regrouping into pairs in order... ’
F(®)-F(a)=F(x,)—F{x, )+ F{x,4)F{x,  }+ +F {2}~ F {(x,)
This can now be expressed as a summation...
F(B)-F(a) =3[ F (x)~F (5.1)]
By the Mean Value Theorem, we know that there exists a number ¢; in the  subinterval such that

P(c)= F (x; ? - : (%.1)

Ry

therefore  F{x)~F(x_)=F'(c,)*(x, —x.)
g Because F is the antiderivative of £ F'(¢,)=f{¢,) and you define Ax, = x, —x, ,, then...
F(xf)m F ('xtl) = f(ci) Axi
From earlier:  F(b)—F(a)= i[F (%)~ F (%) ]
fa}
| )
e -r@=Flre)s]

This result tells us that by repeatedly applying the Mean Value Theorem, you can always
find a collection of ¢, values such that the constant F(b} - F(a} is a Riemann Sum of fon

{a,b] for any partition.

Now taking a limit to apply infinitely many subintervals:

F(5)-F(a)=lim>'[ 1 (c) &x]

_F(b)wﬁ*(q)%if(x)céc




Evaluate...

#3. g(x) mfz‘z dr | | #4,g(x)"T3t3 dt
é}ﬂmwm - Z ’ij
] (Ao

What if we took the derivative of the result cf the last two examples?

#5, g(ar:)m_:[{-2 ar = [ § %%} (‘X] 46, g(x)m‘]‘%g @t gj&[;(%%’) =3(xY) 2X

Find g'(x) Find g'(x)
Al 567467 AL 0 -%O)]
(P —o 3(x7) 2 —°

@ 30%) @9

This can be extended by the chain rule to a more general {and useful) form:

if & function # is continuous on an open interval 7 containing a,
then, for every xin the interval

This result is known as the "other part’ of the Fundamental Theorem of Calculus {part 1 In our texthook):

if a function ¥ is continuous on an open interval I containing &
then, for every X in the intervel

Lroal-re)

-OF even more generally:

 a function £ is continuous on an open interval I containing &,
then, for every x inthe interval

AT o] rte() -5~ 10609462

LE)




Evaluate
1k LoodlE
T #L *5;{ j; f (‘)d‘] #8. E[; f(a‘)dt:’ ‘
[£630) 12 ~ #07)2x } 2Dt — €033

-5/ X etk ]
EF]

#9. Find the interval on which the curve is concave upward.

x 1

0 L2
l+2+1¢

x L R S 2\
gz %ngzwﬂ%j = lexeyr (1+x4%%)
(| +2) 5 (2

..»?Z _
” ('HM‘}(%;) (L MZ@ i 4 M«Kemﬁ)% GH)

dt

ym

N
7.,,

Y 1S coqave Y vhea y'20  whea 42X <D

Ix< —|

~z><<“~% >




Examples

#10. Lot g(x)= j f(t)dr where the graph of fis shown:
0

a) Evaluate g(5)

b) On what interval is g(x) increasing?

c) Where does g(x) have a maximum value?

2) gls) = g "ot = %5 243 (0D +£ (D) — 3 (=)
=15

b) gt ©5 ety a3 Ahe aren vnke fle £(£) e
5 inerashy. [(8)3)

€) 9l Mo wle=2 |



Unit 4-4: Start Plus Accumuilation,
Displacement vs. Total Distance Travelled
Average Value of a Function vs Average Rate of Change

Start Plus Accumulations Method {SPAM)

We first considered the Fundamental Theorem of Calculus using the example of a car driving at a constant velocity, and
determined that the area under the function curve represents the accumulated distance traveled from time § = G;

¥ {mph) vimphy ¥ {mph} ¥ (k)

50
: {brs) {hrs}
] |
It we leave the ending value as a variable, X, then we are producing a function of time (with
variable x allowing us 1o set the stop ime later} and #his funclion gives us the accumulated
distance from zero to that dme, x.
" g . . X
J'.v(x) s }; v{x}dx Iv(l) gt Iv(f
. A
b A o F e
=V {1)-¥(0) =¥ (2)-7(9) =¥ ()~ {0) V() (a)
= 5{1)~5(0) =3(2)-(0) =5 (%)~ 5{0) = s(x)~s(a)
a oumber rapresenting @ npmber raprosenting & function which gives us a funetion which gives us
distance fravefiad distance fravelled distance travafied for any x distance lravelled from fime

teatoanyt=x

The resulting function is sometimes called an aceumulatic

Although we've shown this for a constant velocity function, this can be shown to be true for any function.
Conceptually, this means that if you have a funciion which represents the dervalfive of a guantily thow it is changing,
for example, over time), then inlegrating that function from a constant fo x will give a function for how that guantify -
accumulates.

We can use this fact to solve problems where we are given the a quantity at & known time and the rate at
which that quantity is changing (its derivative) and then asked fo find the quantity at & 2nd, unkunown time,

#1. Aliquid flows into a storage tank at & rate of (1804 3¢) lters per minute.

if there Is 40 fiters of liquid In the tark at time £ = 2 minutes, bow much Hiquid is inthe tank at = 10
minutes? = 1

5 ’l%)ote =w D -w(z)

f (15013 a= W) -

(18ot+367],

[ia’eap) (2] f18e(+E (z,ﬁ = w(js) =¥
!Smg&{ .;‘:';'Z«W(gg)
;,w&m) = 162y zg,;w%i




$tart Plus Accumulation Method (sPAM}x

We can summarize this idea with what we are calling the ‘Start Plus Accumulation Method (SPAMY) {not an official
termy). Various textbooks use other narmes for this {our textbook calis this the 'Net Change Theorem'y,

76w} =1 ) | £

#2. A hot air balloon's height above the gmund is changing at a rata given by #'(¢)=-110¢+3550

where h is in feet and tis in hours,
If the hot air balloon is on the ground attimet=0, what is the height of the balfoon at ! =2 hours?

WD =hla) + 5 (»ua(:wgn)df

hty=0+ [ R
hﬁ@) =04 [ st ()BT b{i@}éj} ,.{ o)

(A =) = 880 1 é

pa—
i
[ TR mwmmw

™ #3. There are T00 people in line for a popular amusement-park tide when the ride begins operation in the
moming. Once it begins operation, the ride accepts passengers untll the parlcioses 8 hours later. While
there is afine, people move onto the ride at a rate of 800 people per hour, The graph above shows the
rate, rff), at which pecple arrive at the ride throughout the day. Time tis measured in hours from the time

the ride begins operation, ,
#4

Hew many people are in line for the ride at £ = 3 hours? PN

N;) =p(o) +'§ ['5@‘8003% % :

oy oo o= o TN

Pl5) = oo -+£zyz,ow>+ Gy +Hid ) +a>cgoo>] SN
- Z Yoot 20 '

ﬂ(3> — oo+ Fboo — [gaa(j) — faa@;ﬂ _

L0 = 1900 M@

N



Working with velocity: Displacement vs. Total Distance Travelled

It the rate of change we are working with is velocily {50 we are accumulating position or distance} we need to be
cognizant of an important distinction:

Displacement Z %
is the different between >
the start and end i ¢ s )
positions ] o »
; ‘ + position
Displacemeont
Total Distance Travelled L, Total Distance Travelled 7,
is the length of the , »
complete path taken { )
: + position

#4. The velocity function, in feet per second, is v(#)=1"—£-12 for 1st<5
for a particle moving along a straight line.

a} Find the displacement over the interval.
b} Find the total distance that the paricle travels over the given interval.

A) d})’ylammh; sle)-s(1)=§ > (62 dt

i
5
= gj_‘é}" %/’é:&wm%jt

= [ P-4l L 3B O/

=[F18,¢6%

Y by

b)) Jokl dithuedrostledd = — § (LE4-2dt + j (+ =t-2) €

' v
v

~ (—zzx) £ (3833F)

P ¥
— %




Unit 4-5: Integration by Substitution

Integration by Substintion
N Some integrals cannot be evaluated by uslog the basic irsmgmﬁan fam‘ta%s SO We
: meed oiher infegration technigges. Cne of thess Iz indegration ghifution
is bazed on the Chain Ruls.
Berivative using Chain Rale tegration by Substituti
F o ' .
¥ %(an +3] useful when one function f«t{x”“ M] 2 dx 1) define the inside’ function to be u.
, i""jj";"" - s 2} Find duldx and solve For du to geta
EpEl e _ o "toolkit’ with du and a.
#eone B w5 4.[ Wk 3} Substitution afl expressions with x and
el et dw 1, dx in the originat integral $o obtain a new
& _dvie e x {j{“ E*C integral using 4 as the variable.
dv ol e ds2xdy a4 4} Integrate, thes resubstilite U 1o use the
. original x variable.
Y o (26 (#r3f +0
% =4{x +5) (24)
#1. Ix’xfzxsm?ﬁdm w=2x%-3 C#2 j'xs( ~x*) dx U=l ="
P % ' \
~ Fe 2ox s/—4 40) ?%x = '\Q‘}
, ®
(V& F ol A bt .j.x: {u M
- — X
4 b ook =g d < Jud x Pdy =~ L ey
0 o -4 =
L dzuPac < -
@, w
o b
Y
v 2 L7 2y (I'X ) +C;§
7 (273)
xz
-
da -
2 Ay =
5 =) (e}  du= -Ax
VY Ay sl
- 2.
- S “w V’/(l“l\kﬂ{ Y
-l % =L
- S (vrlﬁ' 2au ,?'“f‘i« )'{“3
I e /J
— -—[w'/z"?f(b)‘t * 5"‘4
1 \_—’-’___——_.__—_—_’______,—————

Y2 /).
E“Z["’O orti-x) P2 P



e Sinx Meadk
[
1+cos® x a_gg = —SMx
wsmmw
«( el sados e
ot
—f e

— arctun (W) HC

Wm ¢ mrx\)—fﬂ

#6, }Siﬁscxi‘anixw,i_’] +8ec x. dx W | +Seex

We can take advantage of this to show the work déffereniéy where we dor't have to actually write the 'u’..and

st recognizing that the derivative of the inside funciion gets "absorbed’ when we do the integration.

Showing the u.substitution '

#7. [3(3x-2) & wabx- -2
i
Jurde R

g hy =34%
Y. ic
&
[3/):4)?4~C.
free
U X
LA S
{Fsde) g =352
| XLA‘;:, ?Vé‘ 4

M _ rocrdmat
m@,,je;wéé?

Au vznfﬁg‘é%é’?o‘w e

) e 3x-2
8. [a(am-2) a e
G2 ¢
#10. [~ it purde 4=
ol (3,24
C(4=2) “x“ohx
N2 2z
A (/4—x?) YDl
F7 AN )i
Laly-xD) " +e



#11. J‘(_sz'm 3;7&:)4 (4x—3) d

w2 % B X
d -
j 7] Y dw ;{; :»‘(}t’. -3
- =Bl
e w%‘*c .
[z -+ j
s =

#13. [cos(x +3x)(6x+9) dx
v \ UzXH3*
3 f QIQ('M&Q/ZX«V?%& % _7x43
Y

2 j ¢os (a) A da Az Fedx

2 s (V<

iR A ORI
IEDRIRE L

{;ﬁ sin (xH3xIHC

L JIERR LS

e |

#15. fm(ﬁt)dx W= Sk

ds 5
L e~
SCPI(\A\ 3y o du .;g—‘dx
T f[ma;[u)d‘f oAx —f%dw
£ sin(uy+4C

{ T s $dHe 1

M ele: 2x &3
(% -3ye

#12. I(Zxa - f.’:;vr:-)ﬂ'E ‘(?txw 3)dx

wide, XG3K

#14. [cos(x” +3x)(6x+9) dx e

3 S cos (3R (23 Ax
g‘; s HPC (;

#16. [cos(sx)dx
éj; tos(sX) StA<

[(FrGoee]

m.ﬁc\d?ﬂ X $X
o€

You may choose whichever method sesms best to you for that problem



Using integration by Substitution 1o evaluate Definite Integrals

You can alsa use Integration by Substitution when evaluating d@f‘ nite integrals,
There are thres variations on how to show work...

Ny (this is the most f@rmai_ and the way AP awwxéx work in their rubrics)

us=pogl  ewwwmews . 56 the ool to also convert the
limits of integration 1o wvalies;

dw
= sing 0=0 - u=cos(0)=1
o= —sin Bt BBl > u%m(%)#%
e, sin Bdl = iy
e, _You dont bave lo show this side
e, work, but when vou write the
‘ % integral again using u, make sure
Never write anything ke this which 1y the: limits are also U-values
has a mixtire of varables. I any 5

Integral, everything In the integral
must use the same vadable,

You can avoid c@nvert%ng the firmits iy

of integration to the new variable, ‘jﬁ siné_ .o
but there Is a problem: You aren't (cos0)
aliowed 1o show mixed variables in $AE
the integral but must show the fimlls e
somehow. " j' 1wty

I" Bl

This notation 1s allowed and  »*” m[(mi}“mg]ﬁw

considered cortect {although not

preferred by AP graders) ot
[;”;Imtl

cosé |,

= cos 8 Usually, this methord is more work,
du ., ‘ because the U-stibstution
a6 ~sind generally makes things simpler, g0

e going back to the original variable
dhe = ~sin 6 usually involves more complicated
SN BdO = el expressions.

You can drop he spectal notation
anee youve substiuled back o the
original variable,

You can auoid cenvemng he limits e
of integrafion to the new varable, j’ sinf)
bt there is a problem: You grent

aliowed to show mixed varlables in ¢

the Integra but must show the lindts

R 174
(eost)

#
somehow. Wf {cos a)"a (~sin @) do
4§
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Unit 4-8: Integration using Algebra Techniques

Other Integration Techniques

Some integrals don't resolve using basic antiderivative shortcuts or integration by
substitution immediately, but you can do some additional work o put them into a form
where these techniques will work. Here, we examine a few such technigues.

Inverse Trig forms with constants

We've memorized this form: j dx = arctan x+ C

1+ 2%

1

2
4+ x*

But what if we need fo integrate this: j

What if we manipulated constanis to get a 1 in lower left?

[
j%,m@&é&
A U= 2X
L\-f Waef *)WW J% -y
X
S -
”{ § | +u™ e T’M
g . JL)’,Z‘{"'
L»m :

%ﬂfﬂ'&ﬂm () + <

;Jiwo‘i"l'zé %)*"Cf !

B

it can be shown that the following are true...
{we will leam the technique used o derive these later - rgonomsiric substitution)

jm»arcsm( )+C

()

fmmﬁ-—aiamsec -]-lf-!- +C
ui-a* a a

{We don't usually use the cosine, cotangent, or cosecant forms because they are just the
negatives of these).

We can update our table of antiderivative shortcuts to memorize...



Updated antiderivative list

%[c]mo

furs
e
%ie": =¢"

e ]-(na)a
i[hlx]wi“ (x>0)
%[sinx]mﬁﬁsx

4, cosx|=—sinx
2 foo]
gx-[tanx]mseczx
%{secx]msecxx
d, ,
E{csgx]mmcscxm,x

%{mt x]=—csc’ x

d. .

— [arcsin x]=

dx | 1-x*

~~~~‘~1~~«[ar¢.:m.>s;‘:]m -1

dx N1—x?

4 arctan x| = 1 >

dx 1+x

d 1

—[aresecx] = ———
xfx? 1

———[arccscx]: -1
xvx? —1

m[aracotx]m _12

‘x”a&:xn

0dc=C

(k de=hx+C

-+l

- +1~+C (n=-1)

e di=e"+C

a

; 1
f =] — |a*+C
.a (h})+

L de=Ine+C

i 4

cosxde=sinx+C

sin x dx = —¢cosx +C
sec’ x dx =tan x+C
secxtanx dyx=secx+C

esexcotx de =—csex+C

cse’ x de=—cotx+C




Inverse Trig forms with constants

1 R W |
#1. J'4-§«x2dx gq A = dxmé»m( )-f—c

=)y 4=
S ?"‘&‘“M dn =¥

ﬁf@tﬂ?& 'z,))"t‘“ . z

Splitting into multiple integrals

Sometimes, u-sub won't work as initially stated, but we can split the integral into multiple
integrals:

o [l = (25 f“"‘—"dx 5%4“: aresin( 33 €
- ’4“‘".?52 - Ld_,.k‘@ q ) .
u=x a=%

T A
&u = A g J%{-é@) —F’L{ M-@,ﬁ!? Avsd
= - W%{ +2 NC&M(“%) + &
dum—edx Ty U T “
[
¥y ="2dy _.i@“ "~

O TET

{*Ff&; “raaresh( %ﬁ'ﬁml

Completing the Square

An old algebra technique is aiso sometimes useful...completing the square,

If you have & quadratic which Is not factorable, like...

Xt —4x+7

...you can perform a "complete the square' procedure tc make a portion a binomial squared:
Z !
CERDAES

(x-2)* 43



Polynomial Division

How would we do this one from our extra practice? £

2
#13b. [de
X+

—2X %
S[B + Ry ,.5{5‘3}‘3

Narel / RV AN

~{3xt )
~2x
ZX%2x43 —2Xx
-~ = 5+ x&et-y
X ’

2X
530{)0 ”j S AY U= Xety

f%dij“&d@

Z »'%x. — Dl ¥¥1| 4

a

R

oAw .
Au = 2pedy



Completing the Square
This can sometimes help with mtegratgcm
ekt
x 4x +7 b (x 'Z) +7

j 340 —Z’dx erz 452
9 = 1

f o Av = V_‘,,L arctu ()¢
0 "k~
fr; arcta( ”Jf)«f*cm‘g

Compileting the square is only helpful when the denominator is not factorable:

1 .
et

#3. [

{we will learn another technique Jater which works when the denominator is factorable - partial fraction expansion)

Trigonometry Identities can be used to change the form of the integrand

Sometimes using simpie trig identities can help with integration...

#4. Iian(2x ) dx | | 45 J‘xs tan x“')dx \
il 4 MT & u=tos (x2)
5 .ij(’w"} da _ _25m(39 j =0l Xdx | 3
rx Ry “’tfx?) i;%;» = =5\ &(Y) 1k
J A (2o :
—) j 4 A BM&.K)M - ?féw N K?Qﬁ{%‘f?ﬁﬁ( = "Gl
.mé;ﬁﬁwf 4 € | o | ,&( (4¢ .
w,,___“_«,_mww-vu;;:**‘wf:" S O
{: /?ﬁ @@J“yég‘g{:ﬁg - B g""‘\‘gﬂﬂim
—0r= f

.L,ﬂl\l (c«oﬂ{w‘)} R

[Edelsecten ¢

g TR RO




Here are the trig identities we need you to memorize

Reciprocal ideptities Quotient identities
1 1
e S : . smx . _
sinx = GBex = — tan x = —— sin’x+cos’x =1
GS%IZX Ay cosx
_ H ' v :
COBY = GO == morre 1+ tan® x = sec? x
secx COsXx _
_ ; _ COSX T N
Lo 1 cotx = ——— 1+cot* x=csc’ x
cotx tany .

1+cos(2x)
2

cos*(x)=

One last idea (rarely needed): add and subtract in numerator to enable a spilit
Sometimes adding and sublracting something in the Eniegraﬁ will aliow & usefl spiif,..

H"é = :
#o. Il%«e “f&x Ak ol
x o ’-
= ll:; A« § f)dx fﬁ*é% % z‘e’:{ |

L hilivelc]

Cusotient form suggests maybe Log Rule, 56 try 1o meke Ak g
a pori of the numerador maich the denominator by j‘ M‘ﬁ
adding and sublracting the same term,., P+e*

Muw splitinto 2 Integrals {remember you can split &

o et : 1+¢* - &
numerator & not a denominetor - must retain the f : i
“garmmon denominator’y... 14+ BN
Simplfy, then u-sub for 2nd integral. . ldx~
ety g I 4{ i+ ef"
u=ldet
du=e"dx
, i
Jrase-j~au
o
x ~Inful

x ~fl+e] + C




Unit 4-7: Integration by Parts

Integration by Parts _
integration by Substitution is one of our main techniques for evalualing integrals. Another very widely used
technique is integration by Parte. Where Integration by Substitufion is based on the Cham Rule, Integration by
Parts is based on the Product Rule: .

Derivative using Product Rule _ integration by Parts
L) =ulplev-fu]
d dv  du .
"‘"““[""’] Ut W o integrating this on both sides:  uy = J.u_—dx% wadx

dx de  dx
m‘ju d‘v-a»fv du

..produces the 'integration by parts formula’: J' u &y = yp— IV o

We can also derive the integration by paris formetia by using our ideas of integration representing area:

bluearea red area  total area

judv + fv,dt;e:. = Yy

Now solve for the first ferm: ju av =uy wj"y au

I Integration by Parts, the entire integrand must be divided into two factors which are multiplied together, w and gy

Iudvmwija‘u
VIV

given integral two factors

..then you can instead use the equivalent right side formula. This effectively removes some of the integrand out of the
integrat into the uv and the remaining integral should be simpler to evaluate than the original infegral,
|

\ Imeﬁra.tion b’:{ Paris
13 separate the integrand into two factors, & and dv.
The dv factor must contain the differential and be
something you can infegrate.
2} Take the derivative of u and solve for cm
to obtakn du,
3) Ttake the antiderivative of o fo obtain v

4} Substituie i, v, and dgv into the inlegration
by parts formula, - o

§) Integrate the rﬁmaining {simpier) integral.



Comparing |ht¢gf&ﬁ°l¥ by Part with Integration by Substitution

Integration by Substitution

1} define the *inside’ function to be 1,

2} Find duidx and solve for du to get o
Hoolkit' with du and u,

3} Substitution all expressions with ¥ and dx

fnto the original inteqrat to obtain a new
integral using u 4% the variable,

4} Integrate, then resubstitute u to use the
oryinal x variabie,

integration by Substitution s used when one function
is 'inside’ the other (a composition of functions) and
we make the 'inside’ function u. There is no v, and we
- substitute back inte the origing! integral so that the

variable ehomges o o,

integration by Parts
1} separate the infegrand into dwo factors, v and dv,
The dv factor must contain the differential and be something
you cap integrate.
2) Take the derivative of ¥ and solve for gy
1o obtain du,

3} Take the antitderivative of dv 1o obtain v,

4} Substitute u, v, and dv into the integration
by parts formula. :
&} Integrate the remaining (Simpler) Integral.

ntegration by Party is used when the Infegrand 13 easiy
separated into two things which are multipied. There is
# tand a v, and we substitute into a formada ot the
origing integral). The resylting mmgm 530 usen the
mgmai intepration variable,

#1. [ dx
: ;%)(‘
5 eq[é‘ W) %: =%

olu=3h<
?j@ “dy Ay =Gy
ze “ac

D@@@%}

integration by Parts - guidelines for choose 1 and dv

#2. [3xe” dx
Uz3x  Avae¥de
%23 Jae=fcio
PN A
uv»SudM |

ERleX) - [ ()34
Zxek — Bl ok
2xek - Bt

acipmen eSS

» Make sure that dv is something you can integrate. For examgle, if the infegrand contains
natural log, we don't have a shortcut to integrate that, so that portion should be part of u.

» If you can, select something for u that will get simpler when you take the derfvative, For
exarnple, If the Integrand contains x° that would be best to pu into u, bacause when you take the

derivativé It becomes 2x° (a lower degree and thersfore simpler),

» Try letting dv be the more complicated portion of the integrand.

it you happen to choose wrong, 1 just means that the resulling remaining integral won't be
simpler than the orfginal to infegrate. In that case, just choose u and dv ditferently and iy
again (or maybe try a different procedure, like Integration by Substitution).




oo g chovee)

#3, I}n (x) de  vzdax  Av=dx #4, jxsin(tlx) dx  y=x Ov =St {tx)dx
— 00%2 7_..;{ 5#.1“:«»&‘6{}( : % = fﬁ/(/ >§i«\/’é‘/)()df‘
é{w?,-%&d)e VE-¥ ¢ Au =l 5%/_: \{‘,g‘lS?ﬂlW)
v - {vdu | | v =4 (%)
i ] v — Svdu
whax - j xR —4 Xeas(» H‘zj tos(DAx
| Ly wslendo
xlox = dx | +1d‘/ _
‘ /L N + 72 9#@6%/&1«:,}
[xfax —x+< | (s -
#5. _[ 2x eos(x”)dx
(try integration by substitution first) Sometimes, you need to use
w=x : integration by parts more than once
. 2K #6. jx‘z sinxdx nu=x* dv =smx dx
Py . - Au , g el
A = 1€l | 22 s2x St stnsdx
. | o | atedx y = —eaiX
2 : ,
o SX cos(¥%) 2xAx wr—{vda
‘ J u cosfe) Au dw«;g,[(#p;,: x5k — g (—cosx)Trdx
‘ | 3‘}‘4 g U =X dumﬁ&@"f
o — K asxdX .
\fg i)y u=Yy dv > afydy Xzs +ZE ] “ oy S Sy Carkeh
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Gy Jaez) el Xyt fav —fudd) demdx VEE
M=ty V=S
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Y s¥y J v . __x-chjk_{_&ﬁxgém 4eosn ) +C
sy FeasyA € YUK |
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Youmay find that after repeated integmti"“ by parts, you obtain the original integral...
€0 dx "' | -,
#1. .(g“ ' s(Zx} : "LA}@S(ZY):’ : ’ d?ﬁ—e&, "Celx
¥y
, o Z = B '
é‘)‘» Lsm( X) jdu J@

do =250 y= He'™
uv— Jvdu o N
,waw I
v aslzy) ~ 5{[ u=shlpy o dv ”g?"
(\é'@ w}{@m} ?z,ge\wfm KZ‘K} W} g:é —;;s%@éjﬁ&i \ ){”(V7)e YA)C

_ o »
cha=2cos (2RI v=de

J‘Zé 60)[7%)4’ Ku,v — jvd«[)
‘( ef &?f ‘[’f'«") + E aw;m (29 — f ‘\% ¢, Zﬁa& (zﬁ)dx]
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The "tabular method"

if you must use Integration by Parts more than once (and the result doesn't cycle back around to the
original integral) this results in a noticable pattern In the terms of the answer. Some textbooks (inciuding
ours) polint this out and suggest a quicker method call the “tabular method”. It isn't anything official, and
won't be asked about on the AP Exam, but you could employ this when it is appropriate if you fike:

The usual method.., The "tabular” method...
7. P
#2. _{xzez""dx w=X 4"'6 dx #3. szez'”dx
forte Jdomle s ey oihe)
U~ f udu duvZ«YJX v M ?ﬂ t ([ Ae ) W?;mm_;
X + - X" €
T - R W by - 4
PN Y2 Zk —— e~ — ™ -

g e ) o fau S L e
| \ dazdX g e e S~ »
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Unit 4-8: Trigonometric Integrals

Trigonometric Integrals

Integrals which involve powers of one or more trigonometric functions are referred to as trigonometric intearals
For exampie, the following integrals are frigonometric integrals: '

. 4 ] 5 ;
_{ sin® xcos' x o j ten”® x by

Integrating such integrals involves changing the form of the integral as given using trigonometric identities in order to
produce & form which splits off a portion to form the "du’ for & u-substitution. Offen (but not always) the result is that
the integral is split into multiple, simpler integrals.

Each case is a little different, and becoming adept at this requires practice, but there are some guiding 'rules of
thumb' that suggest techniques which work in different sifuations.

Things to review that you will need

| sin’ w+cos =1 sin?y = L0028
You shouid review and memorize some brig identities: secty = tan w-+1 2 N
. _ 2, 1+cosdu
esc’u=cot’u+1 GOS8 55 s
You shouid also review memofize the trig derivatives and integrals;
gﬁsm x]=cosx Imsx dx =sinx+C
m[cwx]%wmx ;mxmﬁmcasx+ﬂ
%{iﬁax]mm’x fmzxdx#t&mxﬂf»ﬁ’
%Icﬂtx} 5 O8C” X jcﬁcz x dy =—cotx+C
d : > ’
E{s&cx}m%cxwﬁx fsecxtanx dv=seox+C

%{csc x] e SR XCOLX Icsx:xcetx di =g X+ O



The general idea behind infegrating trigonometric integrals is to try to split the integrand into factors so that one part can
bacome 'u" for a u-substitution and the du needed is present in the integral,

J.Siﬁ:’ xcos® x ok

J"ziin2 xoos® xsinx dy wmmmne. SPIILOFF ONE Si1X 0 uSE TOr "du’

I(I ~g08° x')cos‘ XSINX R e TG Ieientily 10 corvert other sines 1o cosines
I{ees" x wws“x)sinx dr mm— S0 tiat yon can splt Into two "coslne’ iitegrals

I cos* xeinx dy - _f cos® xsinx dy /

U = CO8X w8100 (X
A R T :
I “ (Md") I “ ( du) Now, each Integrat has the "du” reguired 16 do & u.subséiution
-»»ju" an +Iz¢’*du
,_l 5 ;{ 'l
5u +7u +L
s 1o,
5cm xusg?(m x+C
i3 3 . )
#1. j'sm xcos” x dx s 4 Itanz xsec? x d
S'm N oY cask dy G T guﬁ A % o S
N oy o d v y %
L c PVEST. 2 Ll
(st ) ( 1= sm2) cosxdx
L
§ u3(1-u*) du 2 taa ¥t C
S éq?‘ -'u(;) 5’/‘4
Jul-Lebt C
‘5{ sinix =% s bxic
Single trig functions are usually just shortcuts or need algebra or trig substitutions...
#3. jcosx dx #4. _ftanxafx ng.dx Uz coLK
, Lol Shs ,
=TS
f D s = —5 el
. S d, —
—{ < du Sy

"'jﬂ«{ w{+ €
|taleshie |

R e




bt sec(x) and csc(x) are special cases, and we should add two new shortcuts to handle these...

#5. jsecxdx

j )( cxttu ye
%Cb“"&@’m |
o M -GS
Kse,czx -f»i‘aecxéw),&&i u=secx +ta e
Secwatany ff} Secrtann 4 5@ty

duz { sectursecsuny dx

{4 du
Anjal4-c
j,(qlkcw%mxf +’C‘E

Simitarly: The way | memorize this...
fcscxdxm In|cscx—cotx|+C jﬁg[mx}msacxmnx

j&ﬁcxdtmm]wcx+mxg+g

gmg{gsc x}m B X COLX
S0
'j’.mnxd"f“m }(;scrxmm%xiiﬂ C




N

I cos’ x dx and f sin® x dx are also special cases - we use the power reducing trig identities:

#6. '{ cos® x dx
5 U:_csjs_(z_x)& x

2

(Sax+2 (carterdy
. QM(; Ny
Ix +% ...;52‘3 4

aseaaT

S ——
x4+ s+ C \

#8. [tan’ x dx
§atxteateddx
$ e (et )
j faqty ety - j Ludtydx
}{"“ZX/ eclxdx — 5 (5edeD Ax
[ fuatxsedxdx — Jsec* Ay +§idx

u= taax

a - .
ﬁ :fS(:‘&z ¥
e = SeLxdx

gu? du = jfea?‘w(‘& # f tdy
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%gCSec%»r)dw o= arceosl %)

2 el do- — $3de
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Y 16-%7
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— 5 W,ﬂw de
Y SMe

LY } Lo e

o 59}9'6(6" u= 5'W
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« Build the triangle based upon the form of the radical:

‘j{g::t? i, Ki)ﬁ .-w(x}i

.,
AN > one leg must ba x, other leg s the radical
fypotenose must be 4
« Write two trig ratios, each pairing the constant with one other side.

» Solve aach expression for the wvariable and take the derivative 1o get dx.

« Substitule for x, gx, and the radical info the original integral to convertitto a
trigonometric integrat which we can solve with the previous section's methods.

» Finally, use the triangle to re-substitute all the @ expressions back to x.
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Unit 4-9: Trigonometric Substitution -

Trigonomefric Substitution

Some integrals have a form in which a part of the integrand can be represented as one side of a right triangle, and
then trig functions of angle 6 for this triangle can be used to substitule everything in the original integral. This
procedure is called {frigonometric substitution . Let's look at an example to see the concept...

[

NE -9

The part under the radical could be thought of as being a leg of a right triangle:

Then we can use the other 2 sides to form a substitution:  cosd = 3 mwz’mg

X - o8

3 3 . x N e gx '\)Jx2 m9 S o
Using the 2 sides with the radical and the constant we get another substitution: tané= 3 X" ~9=3tan6

The last thing we would need to substitute is dx so we take the derivative of the x substitution:

x=3secd
£=3sw9‘tan0
dg

dx = 3secftan 8 d¢

\I! 2 Py
Now we substitute everything back into the original integral and evaluate; f ik dx

x
(2228 oo tan0 do
3secH
3[tan’ 0 46
3j' (seczt? ml) do
3[sec* 6 do+31d0
3tanf+360+C
Finally, we can substitute out the #we added. .
ka"~9=3tam9 f= m(“"’z"g} \Ix2-9+3arctan[
3
variabie constant
We build the triangle to match the form of the radical in the integrand... &x‘p’eﬁf‘i"f’ /
» ‘ % &
#1 J*{?fz’”‘{ & in the example we just did, the radical is of the form  Va* ~ 47
' ® yoith sublraction, the left quantty must be
farger, 5o thls must be the bypotenuse
u
i -t
] %
p , Hypolenuse I3 set, but vou can pul the radical on elther
o’ leg and the constant is on the remaining leg
. 3 ek
...ihen we write two trig ratios, each pairing the constant with one other side: €088 = > ot O 5

We then solve each expression for the x-variable and take the derivative of x._.

x=m§w§=3sccéi -9 =3tan®
o £08

...and substilute for x, dx, and the radical into the origina! integral to convert it &

{o & trigonometric integrat which we can solve with the previous section's L 3gecfiand

methods. dg

. . de = 3secfan Hdd
Finally, use the iriangle to re-substifute all the @ expressions back o x.



#3. j xs /xz +4 dx « Build the triangle based upon the form of the radical:
Ji6- w\/(@) (Q

/-\i 5 (7/&1 2 @} Zera Lse 01-00{_'9’ '\'\ * one leg must be x, other feg is the radical

hypotenuse must be 4
» Write two trig ratios, each pairing the constant with one other side.

3—;,5 '(:w?’b' Scr}a* do

» Solve each expression for the x-variable and take the derivative to get dx.
Y, 5o oy Secotrutrho
tantSecr Sece
77LS " « Substitute for x, dx, and the radical into the otiginal integral to convert itto a

2, / [je& 0’/{) sel #j&,@dﬁdg trigonometric integral which we can solve with the previous section's methods.
=Seco « Finally, use the triange 1o re-substifute all the @ expressions back to x.
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Unit 4-10: Partial Fractions

Partial Fraction Expansion
/\ '

Another technique we can use to evaluaté integrals is Partial Fraction Expanslon. This technigue works when

we have a rational function with degree higher in the denominafor, and we can factor the denominator info multiple
linear or quadratic factors. We then expand the integratl into multiple smalier integrals, one for each factor to
evaluate.

~ Partial Fractions Procedure

) First, if degree in numerator is not lower than denominator, use polynomial division to divide, producing
a polynomial plus a remainder with lower degree in numerator.

2) Factor the denominator into linear and quadratic factors of the form:  (px+¢)” and (ax2 +bx+c)"
3) For each {possibly multiple} linear factor, create terms of the form:
4 B F
+ vt e
(px+a) (pr+q) (px+q)
4) For each (possibly multiple} quadratic factor, create terms of the form:

7 G+ H e+J My N
LY ; + -
(o 4t —)(ax'*hxw) (ax’z'+bx+c)z+ +(m’+bx+c)"

(px+q)" >

..where A B,...F are (currently unknown) constants.

...where G,H,...N are {currently unknown) constants.
5) Add all these new terms and set equal to the 6rig§nal integrand. Then muitiply each new numerator by
whatever is needed so that all terms have the same common denominator.

6) Equate the sum of alt the numerators wnh the original integrand's numerator o form the ‘basic equation’.
The gather all the x° terms together, x terms together, and constants together on each side, and form the
g equations of a system {which have the unknown constants as 'variables’) by matching coefficients.

7) Solve the resulting system for the constants A, B.... then fill these in to form the partial fraction expansion.

Partial Fraction Expansion - Most common case - repeated linear factors

Wby | Y Su+d 3
« Bx-5 5 " dx {(»-Z X-‘}J
#1. m‘“ G bt 2 fom e ( f; sy E0D
< _ Ak 5D A= e e
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56"2. A T At =0 iﬁ""% =) #
ﬁ*;} “M "% y "ﬁ” - /? =
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X&F
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Partial Fractions works when the denominator is factorable..when it isn't, complete the square

1 :
, 7
not factorable

e (P2
forre® s

1 4
[
fr o= om0

G e

What if numerator degree is equal to or higher than denominator?

You use posynomial division to divide out a polynomial, leaving a remainder to do the partial fractions

‘procadure on..

Pl 254
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What if there are multiple copies of factors?

/\
1 ﬂA—ﬁ\

éf’f‘)z Cm‘ }3

You include a term for each mulltiplicity’ with its own constants..,
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A very complex example

f 31 de

x —1

1,
% -1

i

J (x=1)(3* +x+1) &

synthetic division fo start factering: ; 16 0 -
i LI S |
111 00

f‘
- 1m{x~«§){x +xwx~'i) .wa‘“w&vx»kl
(dossn't tactor Rirthery X1

1 A & Bx+ 1

(4), (ha)=+ 2

3)

(xm]){x’ wt»x»s»l) o R

(x~1){+" #x+1) Tl

¥ N AP rxel)  (BreC)z-1)
=D +x41) (P axal)x-1) [ +xe1)(x-1)
A 4 Ax 4 A4 BY o B4 Cx -}
(A4 B} +(A~B+C)x+{A-C)=(0) +(0)x +(1)
100
A+B =0 [1 1 0 0] 3
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A very complex example

* -1
.
1¢ 1 1 5 1 1
s J s g o s LN T S ; |
S'fxwl fo%%x«ri ijz«}.x-ﬂ

At this point, the first two integrals can be done by tsubstitution. For the last one, the denominator isn't
factorabie, s0 let's complele the square and hope for an arctan form:

1

, [ |
. A xge. '.,,va...*‘};.\.‘,m
LY L EDWR ¥ s PR ¥ SN SRS P
3 x-1 3 xfexsl 2 (x ’1) o3 Y 3
.2/ 4 ' (xw?i) *a
u=x-1 =3 +x+] umxwg, o

du=d  du=(2x+1)dk  du=dv

1:1 . irl 1 1 _
P PPt PPt P e

1 We won't encounter anything nearly
1 1 _ 11 xmﬂé L this complex in our course or on the AP
ZInjx—1|-Zinlx? + %+ 1|~ - —parctan| —= |+C Exam. But it is good to know how flexible
3 3 2 \E, ;% and powerful these fools are )




Unit 4-11: Improper Integrals

There are some conditions required in order to use the Fund. '“{’I'twrem for definite integrals
When we evaluate definite infegrals tzsmg the Fundamental Theorem of Caloulus j f(x) e B (1;) .y (a)
there are a few conditions that must be met:

» The interval [a,b] must be finite,

» f{x) muét be continuous over the entire interval [a,b].
Integrals which do not meet these conditions are called Improper Integrals.
Examples of improper integrals:

#
i
e i

improper because the inferval Is nt Eiﬁﬁez

8y
i
W

fmproper because the funclon i3 not continuwous ower [2,4}

Convergence and Divergence of Improper Integrafs

In this section, we will learn techniques for sttempling to evaluate improper integrals, Some improper
integrals will evaluate to a finite, numerical valus and these integrals are said to converge to this value.
Other improper integrals will eveluate to an infinite value and these integrals are said to diverge.

Evaluate by replacing infinite limits or X value at a discontinuity with a constar_:t

There are a couple of variations on the theme, but the main idea for evaluating improper intagrals is to
replace any imit of infegration x-vaiue with a constant, svaluate the integral using the constard, then take the
limit as that constant approaches the problem valus.

A first example: f 1 : Sl e e Thigis equivalent to finding the area under this curve

from 't out fo infinilly. Seemingly, this area might be
irtfinite, but on the diher hand, the curve Is rapidly
approaching 2ort,

i

Firgt, change 1o proper infegral fcrm:ml;m ;’Jﬂc\
32 A X

Then, we'll evaluate the indefinite integral... [ ;"!5 de = fx? s a7 = [W?l

Now, when we plug in the limits of iniegraiion we will use a constant for the infinity and use a limit to evaiuvate:
g
j - hmj'mdx Bim| —

banp X,

—giml 1T [ 1}
E (s e 1 R st -ttt iy
bw- X x5

w;zz{% - {n}

,.1] g. Interestingly, even though we are Integraling forever in
x. the area converges to & finlte arsa of 1.




Another examﬁie
[ =tmfLa
First, we'll evaluate the indefinite integral... j'iwdx = I ]
Now, whenh we piug in the limits of integration we will use a constant for the infinity and use & fimit to evaluate:

N S
im [ e~ o

T P This knproper integral diverges. The tix curve dossn't
}fﬁ[m Exf} [szixﬂ; approach zero as fast as the 1" curve, 50 a5 X

e Ml icreases o nfinfly, the ares does 1ot stay finlte, but
- 51% [31’& Ebi] [111 F‘g grows infinitaly.

o0 diverges

We ghouidnt write down tings Uike this bacauss you can't do
arlthmatic with Infinlly {may be peoallzed on an AP exam)

Forms with infinite Integration limits that produce improper integrals

[£lx)ax [ F)a J £ix)ax
to evaluate... o wzuate... to evaluate, split the integral
lim| F (&) F(a)] [F(a)]- lim [7(8)] at any convenient x —value, c...

[r@a=[reasfria

If there is any x-value where f(x) is discontinuous, replace that x value with a constant, use limit

1
. 1
#3, | dy

Lok ,WE& %]‘
j%dxmjx de=| x o

When wa plug in the zere, we must use a lmitas x
approaches zerp from the right side..

g




Always check to make sure the function is continuous over the integral of integration

X —x-2

#4 i-zzx_l dx:i 2x=1

We must split the integral at x=2...

2 3
2x—1 . 2x—1
+ dx
;I,‘xzwx-2 ‘!xz

X2

interval of integration

at x=2 is 2 problem, so we must split the
integration here and use limits approaching 2

Evaiuate the indefinite integral (using u-substitution).
J- 2x—1

W(lx umxzwxwz du m(mel)dx

Ii—du:ln]uf:]nfxzwxmzl

Now plug in limits of integration and use limits for the x=2 values:

P 2x-1 t 2x-1

'!xl‘x—2dx Jz.xz—x—-2

[in}a 2] +[1n]s —x-2[].

lim (In6* ~ 5~ 2)) - Injof [1nf3* -3~ 2] Jim (a8 - 5-2])
<o~ undef +In[3| ~(~<0)

The In0 is undefined but we could use a limit to evaluate this as well

because we approaching x from the right:
o0 — o0+ Jn[3] + o . .
0] = 11}'51} In |xf s oo

Positive and negative infinities are fighting for control, but we just say
that this improper integral diverges.

We say an integral diverges if, for any reason, it doesn't resolve to a single, finite, number
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We can use all of our previous techiques when evaluating the indefinite integral...

We may still need any of our previous methods in order to evaluate the indefinife integral. With an improper integral, what changes is that at any

problematic x values, we evaluate using a limit as X is approaching those values.
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Unit 4-12: Strategies for Ihtegration

Summary of Integration Strategies

We've now learned a number of strategies for integration, so let's consider these and when they are appilicable.

1) Simplify algebraically / Use Antiderivative Shortcuts

We should always first consider if we can split the integrand into muitiple terms each of which can be integrated
using a shortcut:

ij 2x jx -2 J» dk Ix/dr 2_{ Y i

2) Use trig identities
When trig functions are involved, sometimes trig identities will simplify things:

2 .
[(1+1tan® x) ax cos x+sm2x 1
R cos’x cos’x costx
J-sec xdx

I+tan’x =sec’ x
tanx+C | '

3) u-substitution

When one function is 'inside' another (or considering the entire denomlnator as 'inside’) and the derivative of
the inside function appears in the integral, try u-substitution:

[3Rpn

u=-—x",du=~2xdx, xdx= ~~§-du

take derivative to find du, substitute back into original integral;

I3e"x2x dx_r— w%fe” du

4) Trig functions raised to powers - trigonometric integrals

If there are trig functions raised to powers, use the rules for trigonometric integrals. The main idea is o reserve some
of the trig function(s) to build the 'du’ and write everything else as powers of one trig function.

jtan%sec”’xdx :zftan‘xsec‘xsecxtanxcbc

= j(tan’ x)z sec® x secx tan xdx = f(seoz x —-1)2 sec® x secx tan xdx
u =secx, du=secxtanx dx

= j(u2 wl)z u® du = I(uw — 20" + ua) du




5) Rational functions with factorable denominator - use partial fractions
For rational functions, try partial fraction expansion:
3
!x +x dx = I x +x+2+i dx
x—1 x—1

Partial Fractions Procedure

1) First, if degree in numerater is not lower than denominator, use polynomial division to divide, producing
a polynomial plus a remainder with lower degree in numerator.

2) Factor the denominator into linear and quadrafic factors of the form:  (px+4)" and (ax* +bx+c)’

3) For each (possibly multiple} iinear factor, create terms of the form;

A B F
(mxraq) (mray et (rx+a) Swhere AB.LF are (cutrently unknown) constants,

(px+q)" >

4) For each (possibly multiple) quadratic factor, create terms of the form:

(axavl»bxvl»c). L GxeH eSO Myt N
'(,,,‘2 ”mw) ’ (‘,,‘zq}r It a)? b ( o Pt ﬂ)'z..where G,H,.LN are (currently unknown) constants,
§) Add all these new terms and set equal to the original integrand. Then muitiply each new numerator by
whatever is needed so that all terms have the same common denominator,

3
.....

6) Equate the sum of all the numerators with the original integrand's numerator to form the ‘basic equation’,
The gather all the x* terms together, X terms together, and constants together on each side, and form the
equations of a system (which have the unknown constants as 'variables’) by matching coefficients,

7) Bolve the reéulting system for the constants A, B.... then fill these in fo form the partial fraction expansion.

6) Rational functions with non-factorable denominator - compiete the square to try for arctan form

When you have a quadratic polynomial in the denominator of a rational function, you can try completing the square to
obtain a form which matches the arctan integration shortcut (this sometimes happens for one part of a partial fraction
expansion):

complete the square...

1
e L Rex i
dx

VY +3/ :
X+ 5 Y0 -..now matches the arctan shortout.

du 1 (u)

j s = - grotan| —

x+1/ w+da a a
(«/—/) withu:x—(-%, az‘/%

7) Integrand includes two factors muitiplied - use integration by parts
If the integrand can be split into two factors multiplied together, try integration by parts:

—e A¥CLAN

"

xe” dx
J
, u=x, dv=¢"dx
deriv. to find du i antiderivative to find dv
174
=1 [dv=[ed
dx

du=ldx v=e

substitute into
Uy - j.v du

xe* — Je"dx




8) Integral includes radicals - try trigonometric substitution to produce a trigonometric form
When integrand contains radicals, sometimes you can use trigonometric substitution:

3

X
——— ;' 4
‘[\/16~~~x2 x sinemif-, x=48in 0, dx=4c0s0d@

16— \["”— T

cos@ = ——’ \J}16—x* = 40088

| Jﬁ;’fiﬁ j (45“’ ‘9) 400586 = 64f sin’ 86
R “x
64] sin® 9da=64jsinz 9sin9d9.—..64j (1-cos*6)sin0 do

=64 j sin9d@ —64 j cos? Osin 6d6
{u-sub)

then...

9) Improper integrals (applies to definite integrals only)

For definite integrals, be on the lookout for fwo things which can cause an definite integral to not meet conditions for evaluation:

. . (=)
o The interval [a,b] must be finite. ? 1 -~ dx an infinite limit of integration

5 2—x

4
e f{x) must be continuous over the entire interval [a,b]. 1
a vertical asymptote within the integration interval

Both are handled by replacing any 'bad’ values of x with constants and taking the limit as x approaches the bad value:
B

[ e =lim [~

v 2-x bows D—x

t 1 1

j--—-dx lim ———dx+11m ——dx
53"y d->3" x-~3

2

If your first strategy doesn't work, try other strategies until you find one that works!

Sometimes, more than one method is required...the first produces muitiple integrals which each
require further, different, strategies.



