AP Calc BC — Lesson Notes — Unit 3: Derivative-Applications
Unit 3-1: Indeterminant Forms and L'Hopital's Rule ‘

Our main method to evaluate limits is analytically (plug-in the x-value)

Depending on the form and the particular limit, the result can have a variety of forms which
resolve to a single, non-infinite value... :
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But if any of the following forms occur, we need to investigate further...
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Dividing any constant by zero means the function we are taking a limit of has an uncanceled
zero in the denominator at the target x-value, and therefore has a vertical asymptote here.

Limits which evaluate to-
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These particular forms are called mdetermmant forms and in these cases we can use
L'Hopital's Rule:

If the resulting limit is alse an indeterminant form, L'Hopitai's Rule can be applied multiple
times until a non-indeterminent form is obtained.

On the AP Exam, College Board has a specific way they prefer to see work shown...
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Limits which evaluate to  (0)(:to0)

Limits of the form (0)(e) or (0)(-0) can usually be rearranged using algebra info one

of the indete_rminant forms where L'Hopital's Rule applies:
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Limits involving a function raised to a function

There is one last special limif case: taking a limit of a function raised to a function. In these
Y cases we must empioy a logarithm fo generate & form where L'Hopital's Rule applies
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More examples...
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Unit 3-2: The First and Second Derivative Tests

The First Derwatwe Test

The first derivative of a function gwes the mstantancmus rate of change, or ‘slops’, oE the
function at each x value!
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..by checking the sign of f' (x) we can damrminé if the function is Increasing or decreasing.
The sign of 7*(x) can only change at certain ¥-values, which are called critical numbers
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To conduct a first derivative test on & function, we first identify all the critical numbers, then we
select a single test xvalue in each region between critical numbers, and find the sign of thfa fi ret.
denvatwe o deiermme if the function is mcmafsmg or decreasing in this region, : .
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The First Derivative Test

Note that the sign of f‘(x), usu&iiy, hut not élwayé, changes as X crosses a critical ﬂumba:‘;“
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Relative (local) maxima and minima can only occur at oritical points, but not all critical points are max/mins:

Xl . e T X tf Xwe

i . i . E
i k ; ,
5 f(x) = AN E )
i i i I
i L] 1 [}
i ] 1 P
I i i ;
i e 3 £
B ‘I 12 ot L EYRO. DO R |
L | L
] : i | P
signof f'(x) / i \ ; /
increasing decreasing increasing decreasing
sulative (focal) relative flocsl]  relative (localj  nelther max

maxireum minimiom i oy min

The Second Derwatwe Test

The second derivative af a fundmﬂ gwes us mfarmazton on how ?as‘[ the first derwa'éwa of
a function is changing. If we estimate the slap@ 0? th@ iaﬂgam line at each X...

f (x) DNE

i some regions, the ﬁrst derivative is increasing numerica fly {wmrh ma’mq 1‘%19
&monﬂdw&miwaw&% be positivel. This produces a curve that curves upward and
iz called concave up.

.4 othar regcons«; the first derivative is decreasing numerically (which means the
ive would be negative). This produces a curve that curves upward
s called concave down.




The Second Derwatwa Test

For the first derivative, the points where tha fumt:cm changed from | mcmasmg o decreasmg
were called critical ggmts Sirmilarly, the: points whiere the concavity changas from concave
up to concave dewn {or vice versa) are called znfzectlon gmgts _
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...and these are Tound by finding the x-values where the second derivative is either
zere or undefingd.

Note that the x-values of the critical painis and the inflection points are typically not the
same (although they can be), and also that you-need 1o check sach region because the Sigfa

of either the first or second derivative can only ::hanga al cntlcal of mﬁecﬂon points, but l$
not guaranteed fo change: :
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Ways we can use the First and Second Derivative Tests

We are given information abowut a function...
» We are given the function's expression, ¢.0; f(x) =% 3%+ 5

* We are given the graph of the function, f (x)

« We are given the graph of a derivative of the function: f '(:c) {or, raroly, | ”(x))

« |13 & word problem, we are given information we can use to build a function.

We are then asked to find things like the following:
» Gritical points and x-intervals where f(x) is increasing/decreasing
« inflection points and x-infervals where f (A) is gongave up/down
« The location of relative (local) extrema (maxima and minima)

« The absolute maximum/minimum of a function over a given intervel,
« The 'optitmum’ value (maxiroum or minirmum) under some constraint.




Working with a function expression (without a calculator)

Find the following for 7 (x):

# Critical points and x-intervals where f (x) is increasing/decreasing

» Inflection points and x-intervals where. f (x)r is concave up/down

» The location of relative (local) extrema (maxima and minima)

» Horizonial and vertical asympiotes

.then sketch the function
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Working with a function expression (without a calculator)

Find the following for f(x):
» Critical points and x-intervais where f (x) is increasing/decreasing
» Inflection points and x-intervals where f (x) is concave up/down
« The location of refative {local) extrema (maxima and minima)
» Horizontal and vertical asympiotes

then sketeh the function
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Using derivatives to solve an optimization problem

#3. A manufacturer wants to design an open top, square base, box using 108 sq. in. of
material. If x is the side length of the base, the volume of the box is given by:

Determine the side length which will give the Ea;gee:ﬁ volume, y (x) =275 — % @

{irt Unit 3 part 2 we will practice finding
functions like this frons word problems}

X X
3
Viy = z9-% "ﬂ}f)(

tphrre. Way hen V '/)<):7)



Working with a graph of a function, f (x)
Using the graph, find the following:

« Critical points and intervals where /(x) is increasing/decreasing
« Inflection points and intervals where f{x) Is concave up/down

« Relative extrema
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Working with a graph of a derivative of a function, f"(x)

Using the graph, find the following:

o Crifical points and intervals where f(x) is increasing/decreasing

« Inflection poinis and intervals where F{x) Is concave up/dawn

+ Relative extrema
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Unit 3-3; Average vs. Instantaneous Rate of Change,
and Mean Value/Rolle's Theorem

Average vs Instantaneous Rate of Change

Instantaneous Rate of Change

Average Rate of Changa .
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su ) it gy i1 x ‘ { :‘,

puerage Rate of Change is ahways evalaled over an infervat.
Averane Rate of Change uses he Aldebra slops expression;

Average Rate of Changs of £ (x} _ &y _f {2 QMf{-ﬂ } .
near X =1 Ax 20 atxw t

#1. Mot water Is dripping through a coffeemaker, filling a large cup with cotfes. The amount of

coffes in the cup at time £ (in minutes) is given by a differentiable function C (In ounces).
Selectad values of C(r) are given In the table:
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b} Estimate the
instantaneous rate of
change in the amount
of coffea at ¢ =10 minutes.
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Reminder: Intermediate Value Theorem

I f is continnous on the closed interval [a, b}, | (va) # f (b),
and k is any number between f (a)and f(b), then there is
at least one number ¢ ina,b) such that f{c)=k.
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Note: This theorem doesn't provide a method for finding the value(s) ¢, and deesn't indicate
the number of ¢ values which map to k, 1 only guarantees the existence of at least one
number ¢ such that f{¢) = k.

#2. Hot water is dripping through & coffeemaker, filling a large cup with coffee. The amount of
coffee in the cup at time t (in minutes) is given by a differentiable function C (in ounces).
Selected values of C(r)are given In the table:

ot 4|9 |16

g 1214 8 | 8

s there a time, #=£. in the interval 0<1<16 when the coffee cup deflnitely contains & ounces of coffee?
Justify your answer. _ .
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Mean Value Theorem

Let f be continuous on the closed interval [a,5] and

™ differentiable on the open interval (4, b}, then there exists a
mumber ¢ in (a,b) such that: A B fla
( } f*(a}mf( gm‘:(”)‘

The tean Value Theorem say that is & curve is continuous and differentiable over an interval,
then there must be at least one x-value in the interval at which the derivative is the same as the
average rate of change over the interval. In other words, there must be an x-value where the slope
of the tangert line Is the same as the slope of the secant line through the endpoints.
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#3. Mot water is dripping through a coffeemaker, filling a large cup with coffes. The amount of
coffee in the cup at time ¢ (in minutes) is given by a differentiable function C (in ounces).
Selected values of C(¢}are given in the table:
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a) Isthere a fime, £=4 , in the interval 0<¢<16 when the rate of change of the amount of coffee equals the
average rate of change of the amount of coffee? Justify your answer. ’

b) 1f you are further told that C(¢)=2+f, find k.
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Rolie's Theorem

If the function has the same vaiue at both ends of the interval (so that the average
rate of change is zero), this special case of the Mean Value Theorem is called
Rolle's Theorem: ’

Let £ be continuous on the closed interval [a,b] and
differentiable on the open interval (a, b), i f{a)= 7{5),
then there is at least one number¢ in{a, 5) suchthat f'(c}=0,
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On the AP Exam, the Intermediate and Mean Value Theorems are often found in
problems involving a table of selected values of a function:

i eary | 2 | 3| 5|7 |10
7D el a1 e 111 1s
{meters) L5121 6 | i1 115

The height of 4 free at time ¢ is given by a twice-differentiable function H, where H(z) is measured in meters
and ¢ is measured in years. Selected values of H{z) are given in the table above,

a) Explain why there must be at least one time, ¢, for 2 <z <10, such that H' (t) 2.
H(Y) 6 and H*(») =2 Se-the mmya rude. vt &M»}?@; over [43',5‘7

‘3 H’(ﬁ"’H{;) 6"”2-» m“( "”2.”
o oy Smﬂ:%, -2 , ”2

Sinee ML ) ﬂl—@ei@ﬂ”ﬁmlﬂg mﬁ" £s a(fv co Pt over [‘35) ,
2 Ape fean Y lpe-Th eoress fuamw@@ef +, 3ct <y, S b ~tPart- K ) =2z,

& %mw#}a_..a—# /;wvﬁw&*és L4, &f 2et-</o, Suih Abadt {1 ’7[%»},”

b) Explain why there must be at least one time, ¢, for 2 <t <10, such théx H (t) =4.
Swee HE) IS n}{i“u‘@m»»?%aéé I alre Gahtya) ore £z,107,
goN/tf ard H(2) =15 a«a{:,me IRPA RN
/f?mi%é?f waliake Valve Theoesr gua vatfees ot
2 <tero, feach «ﬁ%-# H4 =Y,

(ﬂa}-}- ore “ﬁ\"@




Unit 3-4: Extrema on an Interval

—~ Terminology of Extmma

local/relative maximum P .
endpoint maximum,
! absolute maximum over [a,b]

I local/relative minima

s i

a | ' b

absolute minimum over fa,b]

N Finding Extrema on an Interval -

Absolute Extrema may occur at
Local/Relative Exirema or at endpoints.

To find absolute max / min over an interval
(without a calculator) perform a 'candidates test"

1) Find all relative extrema and include these x-values in a
list of x candidates where absolute max / min may ocour,

2) Add the two endpoint x-values to the list (if not already there).

3) Find the value of the function at these candidate x-values by simply plugging each into the
function, and identify the absolute maximum and minimum value,



Exampies

#1. Find th@ absolute maximum and absolute minimum value of

(x)m x +§x3m%x over [-4,3]
£'6o= Kgi-z%z-‘?x ¥ HH= '{?X\!*“' B‘é’x?’“% x©
= (X +2x-3) ple. -
= x(x4+3 Yo —1) g | =HZT) - e bt
ermenl pbe ect- 1 esBE i
z0, Xz =3, &7 —\ |-zeb7
3 ( Sy € b mux
over L4300

) bas ahs wax mﬁ“‘z\f A et X =3
L£0) har b #n o=l 64X -3

#2. Find the absolute maximum and absoluie minimum value of
f(x)=x"—4x+1 over [-3,5]

$azzt x| e

c.r%ﬁanﬂ‘af’i at 2 -—g—H :3
A= ~3 1 q b+ =2t
®=T S loy -0ty =6

o r [/51 YJ\\
’VL(%) ho «bS Ve a-@- 722 at X =3

£ by 4h5 s of B atXTT



Unit 3-5. Optimization

Remember tf\is problem?

A manufacturer wants to design an open top, square base box using 108 sq. in. of matenai
If x is the side length of the base, the volume of the box is given by:

Determine the side length which will give the largest volume, v (x) =27x wixg
4

{in Unit 3 part 2 we will practice finding
functions like this from word problems)

ohechre Suretion vedily du!

wix V) 329y — 1 y3

VN = “““-‘%' XED

\/'(;e) =19 %F X T V' &S concave el
222 SCANS FE A ey
)(7’7 23{%‘) =24

X=& h

gi——

)

Optimization

Optimization refers to finding the oplimum value for 2 real-world problem -
finding the values which make a value either a maximum or a minimum,

prof box surface area

e v s el
/T\ in areag -

# anils gold

v, prodit)

s s R

{where it pocurs) one side length

twhore B oocws)

Step 1: Identify the quantity 1o be maximized or minimized - we need a function for this called the ‘objective function’.

Step 2: Define a vatiable for the object, and anything els»&_varyiﬂg iri the problem. Use an illusiration to assist you.

Step 3: Lise the varabiles to build the objective funclion,

$tep 4: If the objective function has more than two varables, make a second equation, the constraing, that also relates the
varisbles {this may involve using a constant from the problem).

Step 5: Soive the constraint for a vanable and substilute into the objective function so that the objective is a function
of only one variable.

Step 6: Use the First and Second Derivative Tests to find the max or min and verify it is a max or min,
Step 7: Re-read the problem to make sure you are answering the question
{may want the optimum value, where it occurs, of something else).




]

#1. A rectangular storage contained®with an open top is to have a volume of 10 m®,
The length of its base is twice the width. Materiai for the base costs $10 per m?.
and material for the sides costs $6 per m®. Find the cost of materials for the

cheapest container. o b} cdlvetunchon / Conshmn—
nn ' - )
g €= Zo )+ 2{2wh)lE) + (20} () NURP
.
C= 3bwh +22W Zwth =
= \ | a2 ==
C':%w[\%- +oW T = \Sow +2ow® = 2wt T owE
&': —,30 W—Z*YDW =20
Yow = M2
veridy mmn ' w
7 _3 W} - Lﬁ—? = \lty
" z3p0W P 7O T y
S0 € 1 conene Of Voo w3t )P = Lesou s
R N T M A uA cost h = 55— )1,23v¢oy028
pes wq.f

C= #1623, 54|

#2. Find the point on the parabola x + ya = () that is closest to the point (O, -3).
ehechve Lo Asheain—
mwn A= (x-o)> +{y +3)* -
AAys=0

i X dubre £ -,».47-
(o2) nn L2 Erly©
= (»3_1)"4’(;/46)7'
Lz gl y by +
,Flﬂn »ij%z‘wé =0
when 9= l (lmf(cwigf@hjrq«/}))

xf-»"‘:?q'

xemy 2 vessly My i
me’ o«%/&ﬂ}df closest-fo {Q{Mﬁ) £ 12y 2,2 5o
Vo (-ﬂf "13 ‘!C 1§ goncene Qf \\’i:;wf
= cohis i mindnn AT
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#3. A farmer plans to fence a rectanguiar pasture adjacent to a river. The pasture must
contain 245,000 square meters, and no fencing is needed along the one side which is
along the nver What dimension wil require the least amount of fencing?

ofjecre. tendhuint-

1 [ [y~ Py e
Yy =2¥s002

200
X FQX‘PQ( _—;‘:“") y= AN =
X

F= X + Y9062 X!

V\g_ﬁ—% 743 M

l=) cL =0
Flz) =420020X | . zémwaw)fﬁ’ >
| = Lo 22 ,
B *x* = 5 | cotievad Vé} “’-fj

T =20 50 Soofliy Ts a pN. Feeedls

x =0 m 32 2500

#4. Find two positive numbers where the sum of the first number plus three times the
second numbet is a minimum, if the product of the numbers must be 147,

ohjechve. ContHeaf—
X4.=4D,
5= X+3Yy 7=
e 7 Yo (23
gz Y(;( l—;(ﬁ“> ' X
| X./ e T‘Cj AW
= x Yt
- _o St = T s
51 = Y x & v
el 9 O Concmie ‘-‘f:
', - 2(1,- ‘ \ ’m'g f:f ﬁ Mfﬁéﬂéﬂuﬁ"% j‘”{m
=¥
X=y¥tl =2 Y= >
#5, The rate (in mg carbon fmir} at which photosynthesis takes place for a species of
phytoplankton is modeled by the function: - 100/
Pal+d

Where [is the light intensity measured in thousands of foot-candles and P is the
photosynthesis rate. For what light intensity is P a max um?

15 <thre Wy coaShmirt )
L 7 =
et f T2
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Unit 3-8: Derivatives in Physics applications

Derivative Terminology in Physics

If the original function is a position function (position as a function of time}, then the first and
higher-order derivatives have specific meanings and names...

original function s{¢) position at a specific time "position”

first derivative v(t) = & (t) how fast position is changing “velocity”
‘ af a specific lime

second derivative a(z‘) =y (g) = 5" (1) how fast velocily is changing ~ “acceleration™
at a specific time

third derivative afthough we dorrt see it often, the derivative of acceleration, how fast acceleration
T * changes at a specific time {the 3rd derivative of position) is called "ferk”.

We also say an object or particle
"speeds up” when the velocity is
positive and increasing or when the
velocity is negative and decreasing
(velocity and acceleration are both
positive or both negative).

We also say an object or particle
"slows down" when the velocity and
acceleration have opposite signs.




#1. A particle moves along the x-axis so that its velacity attime {, 0 <1 <5
is given by v(z) =~6¢* +30¢ —36. Attime t= 1, the position of the particle Is x(1) = 4.

a) Find the acceleration of the particle at any time, £,
b} Find the minimum acceleration of the particle.
¢) When is the particle at rest?
¢) When is the particle moving to the left?
@) Is the particle speeding up or slowing down at f= 17
A) aW) = —(2t +3°
b) ahsmin alld wey ocevs ot et ft) o mipml endds:

Az~ t#o,DNE 52 2 relative. @xrens

j l .”\(-‘r)’«’l%'f’;Q = Mfml‘\,\"\m%w\q(c{,{ekf}od O—F"’ﬁﬁfdl'ﬁ(?(@,
20 TS =25 whach occwrSiat &=
S ) +30 =%

v
C) A res+ when \/éé) =°  Lapierder QZZDW(? {
: 2z By = ) )
b 42l =2 ab 422 A =2 Nt

o Cﬂltk(@{of? ‘
—L L_y _st4b)=

—s (D3>
ab L=z and £=3.

Vv
) parvele woves e e (ot when vlD o a\entalr ¥
Y10 Ccc/\&w\%‘ﬁ“ﬁﬁ ' | Z /< ':5— S
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(ALY ) ()P bom vetez and 34t
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£) LDz =4UF ppal) 36 =742 <°
ali)= 12l 432 >0

Sine Ape S0 op vl «
mﬁmsc-ie VS shwiy dowe ot =),
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#2. A particle moves along the x-axis so that its velocity attime £, 0 <£ <5
is given by v(#)=3(r~1)(r~3). Attime #=2, the position of the particle Is x(2) = 0.

a) Find the acceleration of the particie at any time, £,

b) Find the minimum acceleration of the particle.
¢} When is the particle at rest?

d) When Is the particle moving to the left?

e)ls the pagticle speeding up or slowing down at ¢ = 27
' 2
&) vl =3 (i 43 s3E-ett
ath) = &€

b) abs mn ald) way occur at ciibea ‘-./ﬂf or indewa
s Ao iplate exiTery

( ondi.

alld) =4 H o or PNE

+ i alt) '.ﬁ'flg'é" —f & e mdintuns Qgﬁw(.gffﬁa,” o e fﬁ?enl’ﬁ‘e lo
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5 } =20 12z 13
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#3. The velocity of a parficls moving alonyg the xeaxis Is modeled by a differentiable function v,
wherte the position x Is measured In meters, and the time ¢ is meastred in seconds,

Selected vaiues of v(t) are given in the fable.

(seconds) 0|8 |2 25|34
¥t} ~ T
cneters perseoond) | > | ° 1) -8 | -4 7

Estimate the acceleration of the particle at f = 36 seconds.
() 12 2
— A ~ =
alz0=vl) 2 —— v 3 g -z

#4. If a ball Is thrown vericatly upward with a velocity of 80 fifs, then its height after f seconds is
given by s(¢)=80r 152, '

&) Find the velocity of the ball, v{).

b) What is the maximum height reached by the hall?

<) What is the velocity of the ball when it is 96 Tt. above the ground, on its way up? ...on its way down?
a) vlb) = Bo—30t
b> at Moy, v L’H = o/ uMih ocess at §o 20t

20k = 8°
L= %‘ secandS

The heizht atMIs Aweis S £)= 80 £) 15/ £Y e
: = 10é. 663> L4

) ol k= TE v(i3233t2e)s 2528 $fee (pmart)
o r -
07—"" Sot-+% =o (3. 50%tex)z = 25,248 Fiffee )
ISt = |
whidh ogoors W 4 7182351% Sec

[o/amWa\,? ‘/f)

are! éﬂi 3, 50M Yo ¥ Sl
Lon Ahe WYY 4&4&/\)
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#5. A particle moves along the x-axis so that its velocity attime f, 0<r<6 .isgivenbya
differentiable function v whose graph s shown.
wif

Graph of v

During what ime intervals, if any, is the acceleration of the particle negative? Justify your answer.
.,;_:ra/L.'(j)s*?\/"ééf)‘ So a k) <o when ‘V'(f')éo ,
’ME)’ occus when VI IS acreasiy
which 15 +Frae Lo Dt and Qet<d,



Unit 3-7: Linearization - using tangent lines to approximate a function

Linearization of a function in the region of an x-value and the meaning of ‘differential’

For a given function curve, as long as we stay in a small region around an x-value, then the tangent fine is a good
approximation to the ourve .

dx and ¢y are calfed 'differentials’
A differential is an infinitely small change in & variable’s value.

You can think of y7(x), the derivative, as the ratio of how much change in the y
vatiable is produced by a $mali change in the x varisble.

For example, if the y variable is the height of & tree
o and the x variable is the circunference of the freg,
, :?’ a derivative of 1.5 af x = 30 means that for every 1

additional inch of circunderence 2 ee's height

tangent lin increases by 1.5 feet.

S(30)=1.5 ‘

Wore precisely, te ratio of changes in height to

3 changes in crcumference is £.5 i the region of
&y circumference of 30 inches. if you made an

Avetage rate of change = —— Y T i infinitely stall change in dreumference the

Ax ‘ 36 irdfindtely small change In height woukd be 1.8 times

x = cireumference of tree{in}  the change in circumierence.

F(xy=height of tree(ft)

“If we have one known point on a function curve, and information about the derivative of a function, we can use a
tangent line o find an approximate value for the function near the starting poini:

#1. Given f (x) = x* 42 write the equation of a tangent line to
the curve at x = 1, and then use this tangent line to
approximate the value of the function at x = 2.2

IO rsz=3
40 =2x
Lin=2n=r (13 m=v
Lj _37 ;Z(x*s)
y =2nEAF
y =W

g(2)=20DH) =51
L Az xs

(2.2.54)




Use the 2nd dar%va;tive to determine whether an approximation is an over- or under-estimate

From the graph, we can see that this estimation of f {2.2) is an underestimate of the actusl value of S (2.2)
But we can use the 2nd derivative o find the concavity of fix) 1o determine this without needing a graph:

o g gl22.54)

#2. Given f(x)=x"+2 write the equation of a tangent fine to s / S8
the curve at x = 1, and then use this tangentline to BN R N R
approximate the value of the function at x = 2.2 e RN/ AN | i -
o SR N A

e

Does this approximation over- or under-sstimate the frue value of (2.2)2
= (Wez=2
Y =2x [«{*‘{u) -2 32)m=2
(43 =206~ —» gz 28+ |
y(2.?) 2oty = 26D =5 Y

L) >0

S LS ontare VP (AARIS 1Egion

SO BM S an andereshimaion
ot €(2.7)

#3. Given  F(x)=3x~x*+4
&) Write the equation of & tangent ine lo the curve at x = 2,
1) U_se» 1his tangent ine to approximate the value of the function at x = 3,

¢) Does this approximation over- or under-estimate the true value of f {3) 7
() *@ =165 =6

L= 3 2%
Llo=z-2)y =1 (2,6)m>"]

by —£) =—(x-2)
y =X 4+2tb
Y= —x+8
(b) j[&)'/’(f})ﬁ = 5 xt>)
() #Ca="2<?
Y ﬁ U leacave Ao v ,«’WIU pﬂf‘hﬂ
C £ 55 an ovegFhnaton ob-H(3)

vi



Examples
#4. a) Use the tangent fine at x = 0 to approximate the function f(x)=sin(x)
by Use this tangent line to approximate sin(0), sin(0.1), and sin{0.5).

¢} For sach of these approximetely, what is the 'error’ {difference between the actuat function value
and the approximated vaiue)?

LY 3 e ~m
(a) LO) =50 =0 (&) actm @ppros. Ll
L) =eat x 20D =0 0 o
1&‘/,\(‘5) e - * {a/ 9) "= 5”{9&‘) 70(0(?'5(? 33Yl6££ : @, \ ‘l éi;é '[‘t{‘i
(4-0) =t (x=2) | —o 000l 666
Y=X ' * | .
| sNip,5) = o MH tesS3fe o5 & 2ot /)
(b Ll)xo e e
'G{DAIH)%OJ e
& par-ashearioed

R A

#5. Use a linear approximation o estimate the given number: J36.1
; {
L) =% =% 2
Hzey =4
I ,.mjl’& o Jes ‘
Flz=%% " %zk
i A= = (36,4347 1%
e 2

j:»g’:i;a—f?)oéﬁ
Y= x 2

j(:«"él() = T‘_; (3511) +3 =& 0&5%3



Unit 3-8: Related Rates

In Related Rates problems, two different variables are related and both vary with time

In natural, social, and behavioral sciences, two different quantities represented by variables are
related to sach other, but also both vary over time. If one guantity is changing over time ata

known rate, we can defermine the rate of change of the other quandity (at a specific point in time).
These problems are referred to as related rate problems.

$Solving Related Rates Problems
Step 1 Draw a picture i possible.
Step 2: Identify what rate you are trying to find..ihis will be a derivative, 50 define a variable for this quantity.
Step 3: Identify the rate you are given, and define a variable for this quantity.
Step 4: Use the picture to write an algebra squation linking these variables.
Step 5: Differentiate implicifly with respect to time.

Step 6: Substitute numerical values for the variables and the derivatives atthe
specified point in time, and solve for the unknown rate.

What can make these problems tricky is each one is a little different. But there are some |
frequently ocourting types of equations that are produced, $0 we'll look at some Common ones...

Solving Related Rates Problems

Geometry formulas - the equation relating the two variabies is often a geomelry formuda.
#1. The altituds of a triangle is Mereasing at a rate of 1 cny/minute while the area of the

friangle is increasing ot a rate of 2 cm®minute. How fastis ¥ th of the base of
the triangle changing when the aliitude is 10 cm? ’
db .
Firdt e n

A~ 2 bk
A=gha (/’m(m%m rule)
414) = $bhla) +a 2l5h]

144 - L) () Aytalt %)



Unit 3-8; Related Rates

In Related Rates problems, two different variables are related and both vary with time

In natural, social, and behavioral sciences, two different quantities represented by variables are
related to sach other, but also both vary over time. If one quantity is changing over time at a

known rate, we can determine the rate of change of the other quantity (at a specific point in time)
These problems are referred 1o as related rate problems.

Solving Related Rates Problems
Step 1; Draw a picture i possible.

Step 2: identify what rate you ate trying to find...this will be a detivative, 50 define & variable for this quantity
Step $: Identify the rate you are given, and define a variable for this quantity.

Step 4: Use the picturs to write an algebra aquation linking these variables.

$tep &: Differentiate implicitly with respect to ime.

Step 6: Substitute numerical values for the variables and the derivatives at the

specified point in time, and solve for the unknown rate.

What can make these problems tricky is each one is a little different, But there are some
frequently ocouring vpes of equations that are produced, so we'll look 8 $Ome common ones

Solving Related Rates Problems

Geometry formutas - the equation relating the two variables is offen a geometry formula.

#1. The altitude of a triangle is increasing at & rate of 1 cmmingte while the area of the
triangle is increasing at a rate of 2 oy Airminute. How fast is the length of the base of
the triangle changing when the aitltude is 10 cm and the area is 100 cm®?
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Solving Related Rates Problems
Pythagorean Theorem - when the two variables are lengths or distances moving perpendicularly.

#2_ A plane flying horizontally at an allitude of 1 mile and a speed of 500 milesihr passes
directly over a radar station. Find the rate et which the distance from the plane to the
station s changing when it is 2 miles away from the station,

Ktz st
4e) ) v |10 = b5

zx% +0 —;25%%

Aﬁ: . imﬁg - 23@05 :\'33' o3 ﬁ

e g hr

Quantity accumuiation - when the problem Is about a quantity (often & liquid) accumutating/depleting.

#3. Wateris loal ng out of an inverted condcal tank at a rate of 10,000 em®minute at the same fime that water is
being pumped into the tank at a constant rate. The tank has height 8 m and the diameter at the topis £ m. If
the water level is rising at a rate of 20 cm/minute, find the rate at which waler is being pumped info the tank

when the height of the wateris 2 m. Voo e
. . . . LD

NS 2rcth doitibaw o deriwtiveto 152 yuplern e
/=3 need Ao sabstrike ... Need C P 7

699.6M
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$olving Related Rates Probiems

Geometry formulas - the equation ralating the two variables is often a geometry formuia,

#4. A child throws & stone infe a still pond, causing a cireular ripple to spread. Ifthe
radius of the circle increases at a constant rate of 0.5 teet per second, how fast is the
ares of the ripple increasing when the radius of the ripple is 30 feet?

A»??sz @

b1 de ] Fnd 2
Gel#]= FE PR

Ui zre 4% ol

%:YI@O)@“) = 71,248 467

Pythagorean Theorem - whaen the two varlables are lengths or distances moving perpendicularly.

#5. A 20 foot long tadder is leaning against a wail. If the foot of the ladder is slipping away from the well at a
rate of 7 fi/s, how fast is the top of the ladder (the point where tha ladder touches the wall) moving
downward whan the foot of the ladder is 4 ft rom the wall?

z. 2
sCryts 2 ’ J/j 3
(%b&j w‘“%{, iﬂ - ﬁ% Z%w} ’
I X =
A4 -7, fé%“;@ ¥ e -
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Solving Related Rates Problems
Quantity accumuiation - when the problem is about a quantity (often a liquid) accumuiating/depleting
#5. The radius of a funnel depends upon height according to the function —
j mE’%(a + h’) where 0 £ A <10 and both rand h are in inches.
The funnel contains liquid that is draining from the bottom. At the instant when the

naight of thaliiquici i h = 3 inches, the radius of the surface of the liquid is decraasing
at arate of = Inch por second. At this instant, how fast is the height of the liquid

changing? 3 '
% (k™)
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