FRQ \#9b (NO Calculator) - Improper Integrals, $\mathrm{f}^{\prime}(x)$ applications, derivative rules, tangent lines, infinite series convergence tests, evaluating integrals by u-substitution

2017 AP $^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. Let f be the function defined by $f(x)=\frac{3}{2 x^{2}-7 x+5}$.
(a) Find the slope of the line tangent to the graph of f at $x=3$.
(b) Find the x-coordinate of each critical point of f in the interval $1<x<2.5$. Classify each critical point as the location of a relative minimum, a relative maximum, or neither. Justify your answers.
(c) Using the identity that $\frac{3}{2 x^{2}-7 x+5}=\frac{2}{2 x-5}-\frac{1}{x-1}$, evaluate $\int_{5}^{\infty} f(x) d x$ or show that the integral diverges.
(d) Determine whether the series $\sum_{n=5}^{\infty} \frac{3}{2 n^{2}-7 n+5}$ converges or diverges. State the conditions of the test used for determining convergence or divergence.

FRQ \#9c (NO Calculator) - Improper Integrals, Area, evaluating integrals by the Fundamental Theorem of Calculus, usubstitution, and by parts

AP® Calculus BC 2023 Free-Response Questions

5. The graphs of the functions f and g are shown in the figure for $0 \leq x \leq 3$. It is known that $g(x)=\frac{12}{3+x}$ for $x \geq 0$. The twice-differentiable function f, which is not explicitly given, satisfies $f(3)=2$ and $\int_{0}^{3} f(x) d x=10$.
(a) Find the area of the shaded region enclosed by the graphs of f and g.
(b) Evaluate the improper integral $\int_{0}^{\infty}(g(x))^{2} d x$, or show that the integral diverges.
(c) Let h be the function defined by $h(x)=x \cdot f^{\prime}(x)$. Find the value of $\int_{0}^{3} h(x) d x$.

FRQ \#9d (NO Calculator) - Improper Integrals, derivative rules, tangent lines, evaluating integrals by partial fraction expansion

2019 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. Consider the family of functions $f(x)=\frac{1}{x^{2}-2 x+k}$, where k is a constant.
(a) Find the value of k, for $k>0$, such that the slope of the line tangent to the graph of f at $x=0$ equals 6 .
(b) For $k=-8$, find the value of $\int_{0}^{1} f(x) d x$.
(c) For $k=1$, find the value of $\int_{0}^{2} f(x) d x$ or show that it diverges.
