## Part A (BC): Graphing calculator required

Question 2

## General Scoring Notes

The model solution is presented using standard mathematical notation.

Answers (numeric or algebraic) need not be simplified. Answers given as a decimal approximation should be correct to three places after the decimal point. Within each individual free-response question, at most one point is not earned for inappropriate rounding.

A particle moving along a curve in the $x y$-plane is at position $(x(t), y(t))$ at time $t>0$. The particle moves in such a way that $\frac{d x}{d t}=\sqrt{1+t^{2}}$ and $\frac{d y}{d t}=\ln \left(2+t^{2}\right)$. At time $t=4$, the particle is at the point $(1,5)$.

## Model Solution

 Scoring(a) Find the slope of the line tangent to the path of the particle at time $t=4$.

$$
\left.\frac{d y}{d x}\right|_{t=4}=\frac{y^{\prime}(4)}{x^{\prime}(4)}=\frac{\ln 18}{\sqrt{17}}=0.701018
$$

The slope of the line tangent to the path of the particle at time $t=4$ is 0.701 .

## Scoring notes:

- To earn the point, the setup used to perform the calculation must be evident in the response. The
following examples earn the point: $\frac{y^{\prime}(4)}{x^{\prime}(4)}=0.701, \frac{\ln \left(2+4^{2}\right)}{\sqrt{1+4^{2}}}$, or $\frac{\ln 18}{\sqrt{17}}$.
- Note: A response with an incorrect equation of the form "function = constant", such as $\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\ln (18)}{\sqrt{17}}$, will not earn the point. However, such a response will be eligible for any points for similar errors in subsequent parts.
(b) Find the speed of the particle at time $t=4$, and find the acceleration vector of the particle at time $t=4$.

$$
\sqrt{\left(x^{\prime}(4)\right)^{2}+\left(y^{\prime}(4)\right)^{2}}=\sqrt{17+(\ln 18)^{2}}=5.035300 \quad \text { Speed } \quad \mathbf{1} \text { point }
$$

The speed of the particle at time $t=4$ is 5.035 .

$$
a(4)=\left\langle x^{\prime \prime}(4), y^{\prime \prime}(4)\right\rangle=\left\langle\frac{4}{\sqrt{17}}, \frac{4}{9}\right\rangle=\langle 0.970143,0.444444\rangle
$$

First component of
acceleration
Second component of 1 point acceleration

The acceleration vector of the particle at time $t=4$ is $\langle 0.970,0.444\rangle$.

## Scoring notes:

- To earn any of these points, the setup used to perform the calculation must be evident in the response. For example, $\sqrt{\left(x^{\prime}(4)\right)^{2}+\left(y^{\prime}(4)\right)^{2}}=5.035$ or $\sqrt{17+(\ln 18)^{2}}$ earns the first point, and $\left\langle x^{\prime \prime}(4), y^{\prime \prime}(4)\right\rangle=\left\langle\frac{4}{\sqrt{17}}, \frac{4}{9}\right\rangle$ earns both the second and third points.
- The second and third points can be earned independently.
- If the acceleration vector is not presented as an ordered pair, the $x$ - and $y$-components must be labeled.
- If the components of the acceleration vector are reversed, the response does not earn either of the last 2 points.
- A response which correctly calculates expressions for both $x^{\prime \prime}(t)=\frac{t}{\sqrt{1+t^{2}}}$ and $y^{\prime \prime}(t)=\frac{2 t}{2+t^{2}}$, but which fails to evaluate both of these expressions at $t=4$, earns only 1 of the last 2 points.
- An unsupported acceleration vector earns only 1 of the last 2 points.
(c) Find the $y$-coordinate of the particle's position at time $t=6$.

| $y(6)=y(4)+\int_{4}^{6} \ln \left(2+t^{2}\right) d t$ | Integrand | $\mathbf{1}$ point |
| :--- | :--- | ---: |
| $=5+6.570517=11.570517$ | Uses $y(4)$ | $\mathbf{1}$ point |
|  | Answer | $\mathbf{1}$ point |

The $y$-coordinate of the particle's position at time $t=6$ is 11.571 (or 11.570 ).

## Scoring notes:

- For the first point, an integrand of $\ln \left(2+t^{2}\right)$ can appear in either an indefinite integral or an incorrect definite integral.
- A definite integral with incorrect limits is not eligible for the answer point.
- Similarly, an indefinite integral is not eligible for the answer point.
- For the second point, the value for $y(4)$ must be added to a definite integral.
- A response that reports the correct $x$-coordinate of the particle's position at time $t=6$ as $x(6)=x(4)+\int_{4}^{6} \sqrt{1+t^{2}} d t=11.200$ (or 11.201 ) instead of the $y$-coordinate, earns 2 out of the 3 points.
- A response that earns the first point but not the second can earn the third point with an answer of 6.571 (or 6.570 ).
- If the differential is missing:
- $y(6)=\int_{4}^{6} \ln \left(2+t^{2}\right)$ earns the first point and is eligible for the third.
o $y(6)=\int_{4}^{6} \ln \left(2+t^{2}\right)+y(4)$ does not earn the first point but is eligible for the second and third points in the presence of the correct answer.
- $y(6)=y(4)+\int_{4}^{6} \ln \left(2+t^{2}\right)$ earns the first two points and is eligible for the third.

Total for part (c)
(d) Find the total distance the particle travels along the curve from time $t=4$ to time $t=6$.

| $\int_{4}^{6} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$ | Integrand | $\mathbf{1}$ point |
| :--- | :--- | :--- |
| $=12.136228$ | Answer | $\mathbf{1}$ point |

The total distance the particle travels along the curve from time $t=4$ to time $t=6$ is 12.136 .

## Scoring notes:

- The first point is earned for presenting the correct integrand in a definite integral.
- To earn the second point, a response must have earned the first point and must present the value 12.136.
- An unsupported answer of 12.136 does not earn either point.

