2017 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =1 \\
f^{(n+1)}(0) & =-n \cdot f^{(n)}(0) \text { for all } n \geq 1
\end{aligned}
$$

6. A function f has derivatives of all orders for $-1<x<1$. The derivatives of f satisfy the conditions above.

The Maclaurin series for f converges to $f(x)$ for $|x|<1$.
(a) Show that the first four nonzero terms of the Maclaurin series for f are $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$, and write the general term of the Maclaurin series for f.
(b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at $x=1$. Explain your reasoning.
(c) Write the first four nonzero terms and the general term of the Maclaurin series for $g(x)=\int_{0}^{x} f(t) d t$.
(d) Let $P_{n}\left(\frac{1}{2}\right)$ represent the n th-degree Taylor polynomial for g about $x=0$ evaluated at $x=\frac{1}{2}$, where g is the function defined in part (c). Use the alternating series error bound to show that

$$
\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|<\frac{1}{500} .
$$

6. The function f has derivatives of all orders for all real numbers. It is known that $f(0)=2, f^{\prime}(0)=3$, $f^{\prime \prime}(x)=-f\left(x^{2}\right)$, and $f^{\prime \prime \prime}(x)=-2 x \cdot f^{\prime}\left(x^{2}\right)$.
(a) Find $f^{(4)}(x)$, the fourth derivative of f with respect to x. Write the fourth-degree Taylor polynomial for f about $x=0$. Show the work that leads to your answer.
(b) The fourth-degree Taylor polynomial for f about $x=0$ is used to approximate $f(0.1)$. Given that $\left|f^{(5)}(x)\right| \leq 15$ for $0 \leq x \leq 0.5$, use the Lagrange error bound to show that this approximation is within $\frac{1}{10^{5}}$ of the exact value of $f(0.1)$.
(c) Let g be the function such that $g(0)=4$ and $g^{\prime}(x)=e^{x} f(x)$. Write the second-degree Taylor polynomial for g about $x=0$.

AP ${ }^{\circledR}$ Calculus BC 2022 Free-Response Questions

6. The function f is defined by the power series $f(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{2 n+1}+\cdots$ for all real numbers x for which the series converges.
(a) Using the ratio test, find the interval of convergence of the power series for f. Justify your answer.
(b) Show that $\left|f\left(\frac{1}{2}\right)-\frac{1}{2}\right|<\frac{1}{10}$. Justify your answer.
(c) Write the first four nonzero terms and the general term for an infinite series that represents $f^{\prime}(x)$.
(d) Use the result from part (c) to find the value of $f^{\prime}\left(\frac{1}{6}\right)$.

2019 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

n	$f^{(n)}(0)$
2	3
3	$-\frac{23}{2}$
4	54

6. A function f has derivatives of all orders for all real numbers x. A portion of the graph of f is shown above, along with the line tangent to the graph of f at $x=0$. Selected derivatives of f at $x=0$ are given in the table above.
(a) Write the third-degree Taylor polynomial for f about $x=0$.
(b) Write the first three nonzero terms of the Maclaurin series for e^{x}. Write the second-degree Taylor polynomial for $e^{x} f(x)$ about $x=0$.
(c) Let h be the function defined by $h(x)=\int_{0}^{x} f(t) d t$. Use the Taylor polynomial found in part (a) to find an approximation for $h(1)$.
(d) It is known that the Maclaurin series for h converges to $h(x)$ for all real numbers x. It is also known that the individual terms of the series for $h(1)$ alternate in sign and decrease in absolute value to 0 . Use the alternating series error bound to show that the approximation found in part (c) differs from $h(1)$ by at most 0.45 .

2018 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. The Maclaurin series for $\ln (1+x)$ is given by

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+\cdots
$$

On its interval of convergence, this series converges to $\ln (1+x)$. Let f be the function defined by $f(x)=x \ln \left(1+\frac{x}{3}\right)$.
(a) Write the first four nonzero terms and the general term of the Maclaurin series for f.
(b) Determine the interval of convergence of the Maclaurin series for f. Show the work that leads to your answer.
(c) Let $P_{4}(x)$ be the fourth-degree Taylor polynomial for f about $x=0$. Use the alternating series error bound to find an upper bound for $\left|P_{4}(2)-f(2)\right|$.

2016 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

6. The function f has a Taylor series about $x=1$ that converges to $f(x)$ for all x in the interval of convergence. It is known that $f(1)=1, f^{\prime}(1)=-\frac{1}{2}$, and the nth derivative of f at $x=1$ is given by $f^{(n)}(1)=(-1)^{n} \frac{(n-1)!}{2^{n}}$ for $n \geq 2$.
(a) Write the first four nonzero terms and the general term of the Taylor series for f about $x=1$.
(b) The Taylor series for f about $x=1$ has a radius of convergence of 2 . Find the interval of convergence. Show the work that leads to your answer.
(c) The Taylor series for f about $x=1$ can be used to represent $f(1.2)$ as an alternating series. Use the first three nonzero terms of the alternating series to approximate $f(1.2)$.
(d) Show that the approximation found in part (c) is within 0.001 of the exact value of $f(1.2)$.

2015 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series.
(a) Use the ratio test to find R.
(b) Write the first four nonzero terms of the Maclaurin series for f^{\prime}, the derivative of f. Express f^{\prime} as a rational function for $|x|<R$.
(c) Write the first four nonzero terms of the Maclaurin series for e^{x}. Use the Maclaurin series for e^{x} to write the third-degree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$.

2014 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. The Taylor series for a function f about $x=1$ is given by $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n}(x-1)^{n}$ and converges to $f(x)$ for $|x-1|<R$, where R is the radius of convergence of the Taylor series.
(a) Find the value of R.
(b) Find the first three nonzero terms and the general term of the Taylor series for f^{\prime}, the derivative of f, about $x=1$.
(c) The Taylor series for f^{\prime} about $x=1$, found in part (b), is a geometric series. Find the function f^{\prime} to which the series converges for $|x-1|<R$. Use this function to determine f for $|x-1|<R$.

2013 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. A function f has derivatives of all orders at $x=0$. Let $P_{n}(x)$ denote the n th-degree Taylor polynomial for f about $x=0$.
(a) It is known that $f(0)=-4$ and that $P_{1}\left(\frac{1}{2}\right)=-3$. Show that $f^{\prime}(0)=2$.
(b) It is known that $f^{\prime \prime}(0)=-\frac{2}{3}$ and $f^{\prime \prime \prime}(0)=\frac{1}{3}$. Find $P_{3}(x)$.
(c) The function h has first derivative given by $h^{\prime}(x)=f(2 x)$. It is known that $h(0)=7$. Find the third-degree Taylor polynomial for h about $x=0$.

2012 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. The function g has derivatives of all orders, and the Maclaurin series for g is

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}-\cdots
$$

(a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
(b) The Maclaurin series for g evaluated at $x=\frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0 . The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.
(c) Write the first three nonzero terms and the general term of the Maclaurin series for $g^{\prime}(x)$.

2011 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. Let $f(x)=\sin \left(x^{2}\right)+\cos x$. The graph of $y=\left|f^{(5)}(x)\right|$ is shown above.
(a) Write the first four nonzero terms of the Taylor series for $\sin x$ about $x=0$, and write the first four nonzero terms of the Taylor series for $\sin \left(x^{2}\right)$ about $x=0$.
(b) Write the first four nonzero terms of the Taylor series for $\cos x$ about $x=0$. Use this series and the series for $\sin \left(x^{2}\right)$, found in part (a), to write the first four nonzero terms of the Taylor series for f about $x=0$.
(c) Find the value of $f^{(6)}(0)$.
(d) Let $P_{4}(x)$ be the fourth-degree Taylor polynomial for f about $x=0$. Using information from the graph of $y=\left|f^{(5)}(x)\right|$ shown above, show that $\left|P_{4}\left(\frac{1}{4}\right)-f\left(\frac{1}{4}\right)\right|<\frac{1}{3000}$.

2010 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

$$
f(x)= \begin{cases}\frac{\cos x-1}{x^{2}} & \text { for } x \neq 0 \\ -\frac{1}{2} & \text { for } x=0\end{cases}
$$

6. The function f, defined above, has derivatives of all orders. Let g be the function defined by $g(x)=1+\int_{0}^{x} f(t) d t$.
(a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about $x=0$. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about $x=0$.
(b) Use the Taylor series for f about $x=0$ found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at $x=0$. Give a reason for your answer.
(c) Write the fifth-degree Taylor polynomial for g about $x=0$.
(d) The Taylor series for g about $x=0$, evaluated at $x=1$, is an alternating series with individual terms that decrease in absolute value to 0 . Use the third-degree Taylor polynomial for g about $x=0$ to estimate the value of $g(1)$. Explain why this estimate differs from the actual value of $g(1)$ by less than $\frac{1}{6!}$.
