FRQ #6 (NO Calculator) - Infinite Series

AP® Calculus BC 2021 Free-Response Questions

6. The function g has derivatives of all orders for all real numbers. The Maclaurin series for g is given by

$$g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{2e^n + 3}$$
 on its interval of convergence.

- (a) State the conditions necessary to use the integral test to determine convergence of the series $\sum_{n=0}^{\infty} \frac{1}{e^n}$. Use the integral test to show that $\sum_{n=0}^{\infty} \frac{1}{e^n}$ converges.
- (b) Use the limit comparison test with the series $\sum_{n=0}^{\infty} \frac{1}{e^n}$ to show that the series $g(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2e^n + 3}$ converges absolutely.
- (c) Determine the radius of convergence of the Maclaurin series for g.
- (d) The first two terms of the series $g(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2e^n + 3}$ are used to approximate g(1). Use the alternating series error bound to determine an upper bound on the error of the approximation.