FRQ #5b (NO Calculator) – <u>Differential Equations</u>, Euler's method, solving by separation of variables, evaluating limits (l'Hopital's rule)

2013 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 5. Consider the differential equation $\frac{dy}{dx} = y^2(2x + 2)$. Let y = f(x) be the particular solution to the differential equation with initial condition f(0) = -1.
 - (a) Find $\lim_{x\to 0} \frac{f(x)+1}{\sin x}$. Show the work that leads to your answer.
 - (b) Use Euler's method, starting at x = 0 with two steps of equal size, to approximate $f\left(\frac{1}{2}\right)$.
 - (c) Find y = f(x), the particular solution to the differential equation with initial condition f(0) = -1.

FRQ #5c (NO Calculator) – <u>Differential Equations</u>, Euler's method, solving by separation of variables, evaluating limits (l'Hopital's rule)

2010 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 5. Consider the differential equation $\frac{dy}{dx} = 1 y$. Let y = f(x) be the particular solution to this differential equation with the initial condition f(1) = 0. For this particular solution, f(x) < 1 for all values of x.
 - (a) Use Euler's method, starting at x = 1 with two steps of equal size, to approximate f(0). Show the work that leads to your answer.
 - (b) Find $\lim_{x\to 1} \frac{f(x)}{x^3-1}$. Show the work that leads to your answer.
 - (c) Find the particular solution y = f(x) to the differential equation $\frac{dy}{dx} = 1 y$ with the initial condition f(1) = 0.

FRQ #5d (NO Calculator) – <u>Differential Equations</u>, Euler's method, evaluating limits (l'Hopital's rule), <u>implicit</u> <u>differentiation</u>, f'(x) applications

2016 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 4. Consider the differential equation $\frac{dy}{dx} = x^2 \frac{1}{2}y$.
 - (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
 - (b) Let y = f(x) be the particular solution to the given differential equation whose graph passes through the point (-2, 8). Does the graph of f have a relative minimum, a relative maximum, or neither at the point (-2, 8)? Justify your answer.
 - (c) Let y = g(x) be the particular solution to the given differential equation with g(-1) = 2. Find $\lim_{x \to -1} \left(\frac{g(x) 2}{3(x+1)^2} \right)$. Show the work that leads to your answer.
 - (d) Let y = h(x) be the particular solution to the given differential equation with h(0) = 2. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate h(1).