2011 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

4. The continuous function f is defined on the interval $-4 \leq x \leq 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above. Let $g(x)=2 x+\int_{0}^{x} f(t) d t$.
(a) Find $g(-3)$. Find $g^{\prime}(x)$ and evaluate $g^{\prime}(-3)$.
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \leq x \leq 3$. Justify your answer.
(c) Find all values of x on the interval $-4<x<3$ for which the graph of g has a point of inflection. Give a reason for your answer.
(d) Find the average rate of change of f on the interval $-4 \leq x \leq 3$. There is no point $c,-4<c<3$, for which $f^{\prime}(c)$ is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.

FRQ \#4c (NO Calculator) - Using graph of f and f^{\prime}, evaluating integrals with geometry and by Fundamental Theorem of Calculus, $\mathrm{f}^{\prime}(\mathrm{x})$ applications, $\mathrm{f}^{\prime \prime}(\mathrm{x})$ applications

2018 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

Graph of g
3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \leq x<3$, and $g(x)=2(x-4)^{2}$ for $3 \leq x \leq 6$.
(a) If $f(1)=3$, what is the value of $f(-5)$?
(b) Evaluate $\int_{1}^{6} g(x) d x$.
(c) For $-5<x<6$, on what open intervals, if any, is the graph of f both increasing and concave up? Give a reason for your answer.
(d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.

FRQ \#4d (NO Calculator) - Using graph of f and f^{\prime}, evaluating integrals using geometry, $f^{\prime}(x)$ applications, $\mathrm{f}^{\prime \prime}(\mathrm{x})$ applications

2016 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS
 CALCULUS BC
 SECTION II, Part B
 Time- $\mathbf{6 0}$ minutes
 Number of problems-4

No calculator is allowed for these problems.

3. The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Does g have a relative minimum, a relative maximum, or neither at $x=10$? Justify your answer.
(b) Does the graph of g have a point of inflection at $x=4$? Justify your answer.
(c) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \leq x \leq 12$. Justify your answers.
(d) For $-4 \leq x \leq 12$, find all intervals for which $g(x) \leq 0$.

FRQ \#4e (NO Calculator) - Using graph of f and f^{\prime} derivatives (tangent lines), evaluating integrals with geometry, derivative rules, $\mathrm{f}^{\prime}(\mathrm{x})$ applications, $\mathrm{f}^{\prime \prime}(\mathrm{x})$ applications

2014 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

Graph of f
3. The function f is defined on the closed interval $[-5,4]$. The graph of f consists of three line segments and is shown in the figure above. Let g be the function defined by $g(x)=\int_{-3}^{x} f(t) d t$.
(a) Find $g(3)$.
(b) On what open intervals contained in $-5<x<4$ is the graph of g both increasing and concave down? Give a reason for your answer.
(c) The function h is defined by $h(x)=\frac{g(x)}{5 x}$. Find $h^{\prime}(3)$.
(d) The function p is defined by $p(x)=f\left(x^{2}-x\right)$. Find the slope of the line tangent to the graph of p at the point where $x=-1$.

2012 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

3. Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find the values of $g(2)$ and $g(-2)$.
(b) For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it does not exist.
(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(d) For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

