2010 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC
 SECTION II, Part B

Time- $\mathbf{4 5}$ minutes
Number of problems- 3
No calculator is allowed for these problems.

4. Let R be the region in the first quadrant bounded by the graph of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=7$.
(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

2011 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC
 SECTION II, Part B

Time- 60 minutes
Number of problems-4

No calculator is allowed for these problems.

3. Let $f(x)=e^{2 x}$. Let R be the region in the first quadrant bounded by the graph of f, the coordinate axes, and the vertical line $x=k$, where $k>0$. The region R is shown in the figure above.
(a) Write, but do not evaluate, an expression involving an integral that gives the perimeter of R in terms of k.
(b) The region R is rotated about the x-axis to form a solid. Find the volume, V, of the solid in terms of k.
(c) The volume V, found in part (b), changes as k changes. If $\frac{d k}{d t}=\frac{1}{3}$, determine $\frac{d V}{d t}$ when $k=\frac{1}{2}$.

2014 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. Let R be the shaded region bounded by the graph of $y=x e^{x^{2}}$, the line $y=-2 x$, and the vertical line $x=1$, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=-2$.
(c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

