
3. A company designs spinning toys using the family of functions $y=c x \sqrt{4-x^{2}}$, where c is a positive constant. The figure above shows the region in the first quadrant bounded by the x-axis and the graph of $y=c x \sqrt{4-x^{2}}$, for some c. Each spinning toy is in the shape of the solid generated when such a region is revolved about the x-axis. Both x and y are measured in inches.
(a) Find the area of the region in the first quadrant bounded by the x-axis and the graph of $y=c x \sqrt{4-x^{2}}$ for $c=6$.
(b) It is known that, for $y=c x \sqrt{4-x^{2}}, \frac{d y}{d x}=\frac{c\left(4-2 x^{2}\right)}{\sqrt{4-x^{2}}}$. For a particular spinning toy, the radius of the largest cross-sectional circular slice is 1.2 inches. What is the value of c for this spinning toy?
(c) For another spinning toy, the volume is 2π cubic inches. What is the value of c for this spinning toy?

