FRQ \#14 (NO Calculator) - Slope field / Differential Equations solution behavior, $\mathrm{f}^{\prime \prime}(\mathrm{x})$ applications, solving a differential equation by separation of variables, using tangent line as an approximation to a function

AP® Calculus BC 2023 Free-Response Questions
3. A bottle of milk is taken out of a refrigerator and placed in a pan of hot water to be warmed. The increasing function M models the temperature of the milk at time t, where $M(t)$ is measured in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and t is the number of minutes since the bottle was placed in the pan. M satisfies the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$. At time $t=0$, the temperature of the milk is $5^{\circ} \mathrm{C}$. It can be shown that $M(t)<40$ for all values of t.
(a) A slope field for the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$ is shown. Sketch the solution curve through the point $(0,5)$.

(b) Use the line tangent to the graph of M at $t=0$ to approximate $M(2)$, the temperature of the milk at time $t=2$ minutes.
(c) Write an expression for $\frac{d^{2} M}{d t^{2}}$ in terms of M. Use $\frac{d^{2} M}{d t^{2}}$ to determine whether the approximation from part (b) is an underestimate or an overestimate for the actual value of $M(2)$. Give a reason for your answer.
(d) Use separation of variables to find an expression for $M(t)$, the particular solution to the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$ with initial condition $M(0)=5$.

