AP® CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 4

(a) $H'(0) = -\frac{1}{4}(91 - 27) = -16$ H(0) = 91 An equation for the tangent line is $y = 91 - 16t$.	3 :
The internal temperature of the potato at time $t = 3$ minutes is approximately $91 - 16 \cdot 3 = 43$ degrees Celsius.	
(b) $\frac{d^2H}{dt^2} = -\frac{1}{4}\frac{dH}{dt} = \left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)(H-27) = \frac{1}{16}(H-27)$ $H > 27 \text{ for } t > 0 \implies \frac{d^2H}{dt^2} = \frac{1}{16}(H-27) > 0 \text{ for } t > 0$ Therefore, the graph of H is concave up for $t > 0$. Thus, the answer in part (a) is an underestimate.	1 : underestimate with reason
(c) $\frac{dG}{(G-27)^{2/3}} = -dt$ $\int \frac{dG}{(G-27)^{2/3}} = \int (-1) dt$ $3(G-27)^{1/3} = -t + C$ $3(91-27)^{1/3} = 0 + C \Rightarrow C = 12$ $3(G-27)^{1/3} = 12 - t$ $G(t) = 27 + \left(\frac{12-t}{3}\right)^3$ for $0 \le t < 10$ The internal temperature of the potato at time $t = 3$ minutes is $27 + \left(\frac{12-3}{3}\right)^3 = 54$ degrees Celsius.	5 : $\begin{cases} 1 : \text{separation of variables} \\ 1 : \text{antiderivatives} \\ 1 : \text{constant of integration and} \\ \text{uses initial condition} \\ 1 : \text{equation involving } G \text{ and } t \\ 1 : G(t) \text{ and } G(3) \end{cases}$ Note: max 2/5 [1-1-0-0-0] if no constant of integration Note: 0/5 if no separation of variables