## 2013 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS


2. The graphs of the polar curves $r=3$ and $r=4-2 \sin \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
(a) Let $S$ be the shaded region that is inside the graph of $r=3$ and also inside the graph of $r=4-2 \sin \theta$. Find the area of $S$.
(b) A particle moves along the polar curve $r=4-2 \sin \theta$ so that at time $t$ seconds, $\theta=t^{2}$. Find the time $t$ in the interval $1 \leq t \leq 2$ for which the $x$-coordinate of the particle's position is -1 .
(c) For the particle described in part (b), find the position vector in terms of $t$. Find the velocity vector at time $t=1.5$.

## 2019 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS


2. Let $S$ be the region bounded by the graph of the polar curve $r(\theta)=3 \sqrt{\theta} \sin \left(\theta^{2}\right)$ for $0 \leq \theta \leq \sqrt{\pi}$, as shown in the figure above.
(a) Find the area of $S$.
(b) What is the average distance from the origin to a point on the polar curve $r(\theta)=3 \sqrt{\theta} \sin \left(\theta^{2}\right)$ for $0 \leq \theta \leq \sqrt{\pi} ?$
(c) There is a line through the origin with positive slope $m$ that divides the region $S$ into two regions with equal areas. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of $m$.
(d) For $k>0$, let $A(k)$ be the area of the portion of region $S$ that is also inside the circle $r=k \cos \theta$. Find $\lim _{k \rightarrow \infty} A(k)$.

## 2014 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS


2. The graphs of the polar curves $r=3$ and $r=3-2 \sin (2 \theta)$ are shown in the figure above for $0 \leq \theta \leq \pi$.
(a) Let $R$ be the shaded region that is inside the graph of $r=3$ and inside the graph of $r=3-2 \sin (2 \theta)$. Find the area of $R$.
(b) For the curve $r=3-2 \sin (2 \theta)$, find the value of $\frac{d x}{d \theta}$ at $\theta=\frac{\pi}{6}$.
(c) The distance between the two curves changes for $0<\theta<\frac{\pi}{2}$. Find the rate at which the distance between the two curves is changing with respect to $\theta$ when $\theta=\frac{\pi}{3}$.
(d) A particle is moving along the curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=3$ for all times $t \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$.

## 2018 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS


5. The graphs of the polar curves $r=4$ and $r=3+2 \cos \theta$ are shown in the figure above. The curves intersect at $\theta=\frac{\pi}{3}$ and $\theta=\frac{5 \pi}{3}$.
(a) Let $R$ be the shaded region that is inside the graph of $r=4$ and also outside the graph of $r=3+2 \cos \theta$, as shown in the figure above. Write an expression involving an integral for the area of $R$.
(b) Find the slope of the line tangent to the graph of $r=3+2 \cos \theta$ at $\theta=\frac{\pi}{2}$.
(c) A particle moves along the portion of the curve $r=3+2 \cos \theta$ for $0<\theta<\frac{\pi}{2}$. The particle moves in such a way that the distance between the particle and the origin increases at a constant rate of 3 units per second. Find the rate at which the angle $\theta$ changes with respect to time at the instant when the position of the particle corresponds to $\theta=\frac{\pi}{3}$. Indicate units of measure.

