AP[®] CALCULUS BC 2017 SCORING GUIDELINES

Question 2

(a) $\frac{1}{2} \int_{0}^{\pi/2} (f(\theta))^2 d\theta = 0.648414$ The area of <i>R</i> is 0.648.	$2: \begin{cases} 1 : integral \\ 1 : answer \end{cases}$
(b) $\int_{0}^{k} ((g(\theta))^{2} - (f(\theta))^{2}) d\theta = \frac{1}{2} \int_{0}^{\pi/2} ((g(\theta))^{2} - (f(\theta))^{2}) d\theta$ - OR - $\int_{0}^{k} ((g(\theta))^{2} - (f(\theta))^{2}) d\theta = \int_{k}^{\pi/2} ((g(\theta))^{2} - (f(\theta))^{2}) d\theta$	2 :
(c) $w(\theta) = g(\theta) - f(\theta)$ $w_A = \frac{\int_0^{\pi/2} w(\theta) d\theta}{\frac{\pi}{2} - 0} = 0.485446$	$3: \begin{cases} 1: w(\theta) \\ 1: \text{ integral} \\ 1: \text{ average value} \end{cases}$
The average value of $w(\theta)$ on the interval $\left[0, \frac{\pi}{2}\right]$ is 0.485.	
(d) $w(\theta) = w_A$ for $0 \le \theta \le \frac{\pi}{2} \implies \theta = 0.517688$ $w(\theta) = w_A$ at $\theta = 0.518$ (or 0.517). $w'(0.518) < 0 \implies w(\theta)$ is decreasing at $\theta = 0.518$.	$2: \begin{cases} 1 : \text{solves } w(\theta) = w_A \\ 1 : \text{answer with reason} \end{cases}$