AP ${ }^{\circledR}$ CALCULUS BC 2017 SCORING GUIDELINES

Question 2

(a) $\frac{1}{2} \int_{0}^{\pi / 2}(f(\theta))^{2} d \theta=0.648414$

The area of R is 0.648 .
(b) $\int_{0}^{k}\left((g(\theta))^{2}-(f(\theta))^{2}\right) d \theta=\frac{1}{2} \int_{0}^{\pi / 2}\left((g(\theta))^{2}-(f(\theta))^{2}\right) d \theta$

- OR -
$\int_{0}^{k}\left((g(\theta))^{2}-(f(\theta))^{2}\right) d \theta=\int_{k}^{\pi / 2}\left((g(\theta))^{2}-(f(\theta))^{2}\right) d \theta$
(c) $w(\theta)=g(\theta)-f(\theta)$
$w_{A}=\frac{\int_{0}^{\pi / 2} w(\theta) d \theta}{\frac{\pi}{2}-0}=0.485446$
The average value of $w(\theta)$ on the interval $\left[0, \frac{\pi}{2}\right]$ is 0.485 .
(d) $w(\theta)=w_{A}$ for $0 \leq \theta \leq \frac{\pi}{2} \Rightarrow \theta=0.517688$
$w(\theta)=w_{A}$ at $\theta=0.518($ or 0.517$)$.
$w^{\prime}(0.518)<0 \Rightarrow w(\theta)$ is decreasing at $\theta=0.518$.

