AP® CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 1

		1 : units in parts (a), (c), and (d)
(a)	Volume = $\int_0^{10} A(h) dh$ $\approx (2 - 0) \cdot A(0) + (5 - 2) \cdot A(2) + (10 - 5) \cdot A(5)$ = 2 \cdot 50.3 + 3 \cdot 14.4 + 5 \cdot 6.5 = 176.3 cubic feet	2 : $\begin{cases} 1 : \text{left Riemann sum} \\ 1 : \text{approximation} \end{cases}$
(b)	The approximation in part (a) is an overestimate because a left Riemann sum is used and A is decreasing.	1 : overestimate with reason
(c)	$\int_{0}^{10} f(h) dh = 101.325338$ The volume is 101.325 cubic feet.	2 : $\begin{cases} 1 : integral \\ 1 : answer \end{cases}$
(d)	Using the model, $V(h) = \int_0^h f(x) dx$. $\frac{dV}{dt}\Big _{h=5} = \left[\frac{dV}{dh} \cdot \frac{dh}{dt}\right]_{h=5}$ $= \left[f(h) \cdot \frac{dh}{dt}\right]_{h=5}$ $= f(5) \cdot 0.26 = 1.694419$ When $h = 5$, the volume of water is changing at a rate of	$3: \begin{cases} 2: \frac{dV}{dt} \\ 1: \text{ answer} \end{cases}$
	1.694 cubic feet per minute.	