AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 1

(a) Volume $=\int_{0}^{10} A(h) d h$

$$
\begin{aligned}
& \approx(2-0) \cdot A(0)+(5-2) \cdot A(2)+(10-5) \cdot A(5) \\
& =2 \cdot 50.3+3 \cdot 14.4+5 \cdot 6.5 \\
& =176.3 \text { cubic feet }
\end{aligned}
$$

(b) The approximation in part (a) is an overestimate because a left Riemann sum is used and A is decreasing.
(c) $\int_{0}^{10} f(h) d h=101.325338$

The volume is 101.325 cubic feet.
(d) Using the model, $V(h)=\int_{0}^{h} f(x) d x$.

$$
\begin{aligned}
\left.\frac{d V}{d t}\right|_{h=5} & =\left[\frac{d V}{d h} \cdot \frac{d h}{d t}\right]_{h=5} \\
& =\left[f(h) \cdot \frac{d h}{d t}\right]_{h=5} \\
& =f(5) \cdot 0.26=1.694419
\end{aligned}
$$

When $h=5$, the volume of water is changing at a rate of 1.694 cubic feet per minute.

