

- 2. The curve above is drawn in the *xy*-plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.
 - (a) Find the area bounded by the curve and the x-axis.
 - (b) Find the angle θ that corresponds to the point on the curve with x-coordinate -2.
 - (c) For $\frac{\pi}{3} < \theta < \frac{2\pi}{3}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?
 - (d) Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

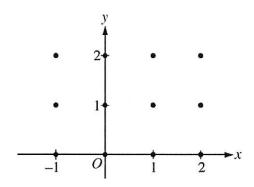
WRITE ALL WORK IN THE TEST BOOKLET.

Distance x (cm)	0	1	5	6	8
Temperature $T(x)$ (°C)	100	93	70	62	55

- 3. A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature T(x), in degrees Celsius (°C), of the wire x cm from the heated end. The function T is decreasing and twice differentiable.
 - (a) Estimate T'(7). Show the work that leads to your answer. Indicate units of measure.
 - (b) Write an integral expression in terms of T(x) for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.
 - (c) Find $\int_0^8 T'(x) dx$, and indicate units of measure. Explain the meaning of $\int_0^8 T'(x) dx$ in terms of the temperature of the wire.
 - (d) Are the data in the table consistent with the assertion that T''(x) > 0 for every x in the interval 0 < x < 8? Explain your answer.

WRITE ALL WORK IN THE TEST BOOKLET.

END OF PART A OF SECTION II

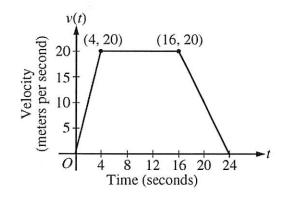

CALCULUS BC SECTION II, Part B

Time—45 minutes
Number of problems—3

No calculator is allowed for these problems.

- 4. Consider the differential equation $\frac{dy}{dx} = 2x y$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and sketch the solution curve that passes through the point (0, 1).

(Note: Use the axes provided in the pink test booklet.)



- (b) The solution curve that passes through the point (0, 1) has a local minimum at $x = \ln\left(\frac{3}{2}\right)$. What is the y-coordinate of this local minimum?
- (c) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(0) = 1. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate f(-0.4). Show the work that leads to your answer.
- (d) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Determine whether the approximation found in part (c) is less than or greater than f(-0.4). Explain your reasoning.

WRITE ALL WORK IN THE TEST BOOKLET.

Copyright © 2005 by College Entrance Examination Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

- 5. A car is traveling on a straight road. For $0 \le t \le 24$ seconds, the car's velocity v(t), in meters per second, is modeled by the piecewise-linear function defined by the graph above.
 - (a) Find $\int_0^{24} v(t) dt$. Using correct units, explain the meaning of $\int_0^{24} v(t) dt$.
 - (b) For each of v'(4) and v'(20), find the value or explain why it does not exist. Indicate units of measure.
 - (c) Let a(t) be the car's acceleration at time t, in meters per second per second. For 0 < t < 24, write a piecewise-defined function for a(t).
 - (d) Find the average rate of change of v over the interval $8 \le t \le 20$. Does the Mean Value Theorem guarantee a value of c, for 8 < c < 20, such that v'(c) is equal to this average rate of change? Why or why not?
- 6. Let f be a function with derivatives of all orders and for which f(2) = 7. When n is odd, the nth derivative of f at x = 2 is 0. When n is even and $n \ge 2$, the nth derivative of f at x = 2 is given by $f^{(n)}(2) = \frac{(n-1)!}{3^n}$.
 - (a) Write the sixth-degree Taylor polynomial for f about x = 2.
 - (b) In the Taylor series for f about x = 2, what is the coefficient of $(x 2)^{2n}$ for $n \ge 1$?
 - (c) Find the interval of convergence of the Taylor series for f about x = 2. Show the work that leads to your answer.

WRITE ALL WORK IN THE TEST BOOKLET.

END OF EXAM

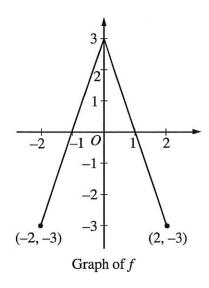
3. An object moving along a curve in the xy-plane is at position (x(t), y(t)) at time t, where

$$\frac{dx}{dt} = \sin^{-1}\left(1 - 2e^{-t}\right) \text{ and } \frac{dy}{dt} = \frac{4t}{1 + t^3}$$

for $t \ge 0$. At time t = 2, the object is at the point (6, -3). (Note: $\sin^{-1} x = \arcsin x$)

- (a) Find the acceleration vector and the speed of the object at time t = 2.
- (b) The curve has a vertical tangent line at one point. At what time t is the object at this point?
- (c) Let m(t) denote the slope of the line tangent to the curve at the point (x(t), y(t)). Write an expression for m(t) in terms of t and use it to evaluate $\lim_{t\to\infty} m(t)$.
- (d) The graph of the curve has a horizontal asymptote y = c. Write, but do not evaluate, an expression involving an improper integral that represents this value c.

WRITE ALL WORK IN THE PINK EXAM BOOKLET.


END OF PART A OF SECTION II

CALCULUS BC SECTION II, Part B

Time—45 minutes

Number of problems—3

No calculator is allowed for these problems.

4. The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x) = \int_0^x f(t) dt$.

- (a) Find g(-1), g'(-1), and g''(-1).
- (b) For what values of x in the open interval (-2, 2) is g increasing? Explain your reasoning.
- (c) For what values of x in the open interval (-2, 2) is the graph of g concave down? Explain your reasoning.
- (d) On the axes provided, sketch the graph of g on the closed interval [-2, 2]. (Note: The axes are provided in the pink test booklet only.)