APCalcBC-HomeworkQuiz-\#4

1. If $y=\arctan (\cos x)$, then $\frac{d y}{d x}=$
(A) $\frac{-\sin x}{1+\cos ^{2} x}$
(B) $-(\operatorname{arcsec}(\cos x))^{2} \sin x$
(C) $(\operatorname{arcsec}(\cos x))^{2}$
(D) $\frac{1}{(\arccos x)^{2}+1}$
(E) $\frac{1}{1+\cos ^{2} x}$
2. $\int x^{2} \cos \left(x^{3}\right) d x=$
(A) $-\frac{1}{3} \sin \left(x^{3}\right)+C$
(B) $\frac{1}{3} \sin \left(x^{3}\right)+C$
(C) $-\frac{x^{3}}{3} \sin \left(x^{3}\right)+C$
(D) $\frac{x^{3}}{3} \sin \left(x^{3}\right)+C$
(E) $\frac{x^{3}}{3} \sin \left(\frac{x^{4}}{4}\right)+C$
3. $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x^{2}+3 x-4}{4 x^{3}-3 x^{2}+2 x-1}=$
(A) 4
(B) 1
(C) $1 / 4$
(D) 0
(E) -1
4. The third-degree Taylor polynomial about $x=0$ of $\ln (1-x)$ is
(A) $-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}$
(B) $1-x+\frac{x^{2}}{2}$
(C) $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}$
(D) $-1+x-\frac{x^{2}}{2}$
(E) $-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}$
5. If $y=\frac{\ln x}{x}$, then $\frac{d y}{d x}=$

APCalcBC-HomeworkQuiz-\#4

(A) $\frac{1}{x}$
(B) $\frac{1}{x^{2}}$
(C) $\frac{\ln x-1}{x^{2}}$
(D) $\frac{1-\ln x}{x^{2}}$
(E) $\frac{1+\ln x}{x^{2}}$
6. 囲 A pizza, heated to a temperature of 350 degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ is taken out of an oven and placed in a $\left(75^{\circ} \mathrm{F}\right)$ room at time $t=0$ minutes. The temperature of the pizza is changing at a rate of $-110 e^{-0.4 t}$ degrees Fahrenheit per minute. To the nearest degree, what is the temperature of the pizza at time $t=5$ minutes?
(A) $112^{\circ} \mathrm{F}$
(B) $119^{\circ} \mathrm{F}$
(C) $147^{\circ} \mathrm{F}$
(D) $238^{\circ} \mathrm{F}$
(E) $335^{\circ} \mathrm{F}$
7. $\int \frac{7 x}{(2 x-3)(x+2)} d x=$
(A) $\quad \frac{3}{2} \ln |2 x-3|+2 \ln |x+2|+C$
(B) $3 \ln |2 x-3|+2 \ln |x+2|+C$
(C) $3 \ln |2 x-3|-2 \ln |x+2|+C$
(D) $-\frac{6}{(2 x-3)^{2}}-\frac{2}{(x+2)^{2}}+C$
(E) $-\frac{3}{(2 x-3)^{2}}-\frac{2}{(x+2)^{2}}+C$
8.

x	2	3	5	8	13
$f(x)$	6	-2	-1	3	9

The function f is continuous on the closed interval $[2,13]$ and has values as shown in the table above. Using the intervals $[2,3],[3,5],[5,8]$, and $[8,13]$ what is the approximation of $\int_{2}^{13} f(x) d x$ obtained from a left Riemann sum?
(A) 6
(B) 14
(C) 28
(D) 32
(E) 50

APCalcBC-HomeworkQuiz-\#4

9.

What is the area enclosed by the curves $y=x^{3}-8 x^{2}+18 x-5$ and $y=x+5$?
(A) 10.667
(B) 11.833
(C) 14.583
(D) 21.333
(E) 32
10. The top of a 25 -foot ladder is sliding down a vertical wall at a constant rate of 3 feet per minute. When the top of the ladder is 7 feet from the ground, what is the rate of change of the distance between the bottom of the ladder and the wall?
(A) $-\frac{7}{8}$ feet per minute
(B) $-\frac{7}{24}$ feet per minute
(C) $\frac{7}{24}$ feet per minute
(D) $\frac{7}{8}$ feet per minute
(E) $\frac{21}{25}$ feet per minute
11. The length of the path described by the parametric equations $x=\cos ^{3} t$ and $y=\sin ^{3} t$, for $0 \leq t \leq \frac{\pi}{2}$ is given by
(A) $\int_{0}^{\frac{\pi}{2}} \sqrt{3 \cos ^{2} t+3 \sin ^{2} t} d t$
(B) $\int_{0}^{\frac{\pi}{2}} \sqrt{-3 \cos ^{2} t \sin t+3 \sin ^{2} t \cos t} d t$
(C) $\int_{0}^{\frac{\pi}{2}} \sqrt{9 \cos ^{4} t+9 \sin ^{4} t} d t$
(D) $\int_{0}^{\frac{\pi}{2}} \sqrt{9 \cos ^{4} t \sin ^{2} t+9 \sin ^{4} t \cos ^{2} t} d t$
(E) $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos ^{6} t+\sin ^{6} t} d t$

APCalcBC-HomeworkQuiz-\#4

12. Which of the following series diverge?
I. $\sum_{n=0}^{\infty}\left(\frac{\sin 2}{\pi}\right)^{n}$
II. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$
III. $\sum_{n=1}^{\infty}\left(\frac{e^{n}}{e^{n}+1}\right)$
(A) III only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III
13. The region R in the first quadrant is enclosed by the lines $x=0$ and $y=5$ and the graph of $y=x^{2}+1$. The volume of the solid generated when R is revolved about the y-axis is
(A) 6Π
(B) 8Π
(C) $34 \Pi / 3$
(D) 16π
(E) $544 \Pi / 15$
14. A curve is described by the parametric equations $x=t^{2}+2 t$ and $y=t^{3}+t^{2}$. An equation of the line tangent to the curve at the point determined by $t=1$ is
(A) $2 x-3 y=0$
(B) $4 x-5 y=2$
(C) $4 x-y=10$
(D) $5 x-4 y=7$
(E) $5 x-y=13$

APCalcBC-HomeworkQuiz-\#4

15.

Graph of f

The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
(A) a
(B) b
(C) c
(D) d
(E) e
16. $\int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} d x$ is
(A) $-\frac{1}{2}$
(B) $-\frac{1}{4}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
(E) divergent
17. If $y=\cos ^{2} 3 x$, then $\mathrm{dy} / \mathrm{dx}=$
(A) $-6 \sin 3 x \cos 3 x$
(B) $-2 \cos 3 x$
(C) $2 \cos 3 x$
(D) $6 \cos 3 x$
(E) $2 \sin 3 x \cos 3 x$
18. A rectangular area is to be enclosed by a wall on one side and fencing on the other three sides. If 18 meters of fencing are used, what is the maximum area that can be enclosed?

APCalcBC-HomeworkQuiz-\#4

(A) $\frac{9}{2} m^{2}$
(B) $\frac{81}{4} m^{2}$
(C) $27 m^{2}$
(D) $40 m^{2}$
(E) $\frac{81}{2} m^{2}$
19.

Graph of f^{\prime}
The graph of f^{\prime}, the derivative of the function f is shown above. On which of the following intervals is f decreasing?
(A) $[2,4]$ only
(B) $[3,5]$ only
(C) $[0,1]$ and $[3,5]$
(D) $[2,4]$ and $[6,7]$
(E) $[0,2]$ and $[4,6]$
20. 囲 The velocity vector of a particle moving in the xy-plane has components given by $\frac{d x}{d t}=\sin \left(t^{2}\right)$ and $\frac{d y}{d t}=e^{\cos t}$. At time $t=4$, the position of the particle is $(2,1)$. What is the y-coordinate of the position vector at time $t=3$?
(A) 0.410
(B) 0.590
(C) 0.851
(D) 1.410
21. $\int x e^{2 x} d x=$
(A) $\mathrm{xe}^{2 \mathrm{x}} / 2-\mathrm{e}^{2 \mathrm{x}} / 4+C$
(B) $\mathrm{xe}^{2 \mathrm{x}} / 2-\mathrm{e}^{2 \mathrm{x}} / 2+\mathrm{C}$
(C) $x^{2 x} / 2+e^{2 x} / 4+C$
(D) $x^{2 x} / 2+e^{2 x} / 2+C$
(E) $\mathrm{x}^{2} \mathrm{e}^{2 \mathrm{x}} / 4+\mathrm{C}$

APCalcBC-HomeworkQuiz-\#4

22. What is the general solution to the differential equation $\frac{d y}{d x}=\frac{x \cos \left(x^{2}\right)}{4 y}$ for $y>0$?
(A) $y=\frac{1}{2} \sqrt{\sin \left(x^{2}\right)}+C$
(B) $y=\sqrt{\frac{1}{4} \sin \left(x^{2}\right)+C}$
(C) $y=\frac{1}{8} \sin \left(x^{2}\right)+C$
(D) $y=C e^{\frac{1}{8} \sin \left(x^{2}\right)}$
23. Let f be a differentiable function such that $f^{\prime}(x) \geq 1$ for all x. If $a<b$, which of the following statements could be false?
(A) $\frac{f(b)-f(a)}{b-a} \geq 1$
(B) $f(b)>f(a)$
(C) There is a value c in the open interval (a, b) such that $f(c)=0$.
(D) There is a value c in the open interval (a, b) such that $f(c)=\frac{f(a)+f(b)}{2}$.
24. 囲 The Taylor series for $\ln x$, centered at $x=1$, is $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-1)^{n}}{n}$. Let f be the function given by the sum of the first three nonzero terms of this series. The maximum value of $|\ln x-f(x)|$ for $0.3 \leq x \leq 1.7$ is
(A) 0.030
(B) 0.039
(C) 0.145
(D) 0.153
(E) 0.529
25. For what value of k, if any, will $y=k e^{-2 x}+4 \cos (3 x)$ be a solution to the differential equation $y^{\prime \prime}+9 y=26 e^{-2 x}$?
(A) 2
(B) $\frac{13}{5}$
(C) 26
(D) There is no such value of k.
