AP Calculus BC

2003 Calculus BC Multiple Choice Exam Part A

1) If
$$y = \sin(3x)$$
 then $\frac{dy}{dx} = 3\cos(3x)$

- $(A) -3\cos(3x)$
- (B) $-\cos(3x)$
- (C) $-\frac{1}{3}\cos(3x)$
- (D) cos(3x)

2)
$$\lim_{x \to 0} \frac{e^x - \cos x - 2x}{x^2 - 2x}$$
 is

(A)
$$-\frac{1}{2}$$

$$(B) 0$$

$$(C) \frac{1}{2}$$

- (D) 1
- (E) nonexistent

3)
$$\int (3x+1)^5 dx =$$

$$(A) \frac{(3x+1)^6}{18} + C$$

(B)
$$\frac{(3x+1)^6}{6} + C$$

(C)
$$\frac{(3x+1)^6}{2} + C$$

(D)
$$\frac{(\frac{3x^2}{2} + x)^6}{2} + C$$

(E)
$$(\frac{3x^2}{2} + x)^5 + C$$

2)
$$\lim_{x\to 0} \frac{e^x - \cos x - 2x}{x^2 - 2x}$$
 is $\frac{e^x - \cos x - 2x}{e^x - 2x}$ is $\frac{e^x - \cos x - 2x}{e$

(E)
$$(\frac{3x^2}{2} + x)^5 + C$$

- 4) For $0 \le t \le 13$ an object travels along an elliptical path given by the parametric equations $x=3\cos t$ and $y=4\sin t$. At the point where t=13, the object leaves the path and travels along the line tangent to the path at that point. What is the slope of the line on which the object travels?
 - m=dy=dyldt= 1005t / = 40513 = 4 -35int / = 35in13 = 36an13 4=13
 - (C) $-\frac{4\tan 13}{3}$
- 5) Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = x + y$ with the initial condition f(1)=2. What is the approximation for f(2) if Euler's method is used, starting at x = 1 with a step size of 0.5?
 - $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,2) | y = 2 + 0.5((1) + (2)) = 3.5}$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ $\frac{(x_{1}y) | y_{n+1} = y_{n} + h(f(x))}{(1,5)(3,5)} = 3.5$ (A) 3 (B) 5 (E) 12
- 6) What are all values of p for which $\int_{1}^{\infty} \frac{1}{x^{2p}} dx$ converges?

 (A) p < -1(B) p > 0

 - - (D) p > 1

- $\lim_{b \to \infty} \left(\frac{1}{2p+1} \right) \frac{1}{-2p+1}$ $\lim_{b \to \infty} \left(\frac{1}{-2p+1} \right) \frac$
- (E) There are no values of *p* for which this integral converges.

- 7) The position of a particle moving in the xy-plane is given by the parametric equations $x = t^3 - 3t^2$ and $y = 2t^3 - 3t^2 - 12t$. For what values of t is the particle at rest?,
 - (A) -1 only
- 第 4 数 = 0
- (B) 0 only
- (C) 2 only
- (D) -1 and 2 only
- (E) -1, 0, and 2

dx = 3t2-6t=0 dy = 6t2-6t-12=0

at 3t(+-2)=0

(6(t2-t-2)=0 6(+1)4-2) t=0,t=2

- $8) \quad \int x^2 \cos(x^3) dx =$
 - (A) $-\frac{1}{3}\sin(x^3) + C$
 - $(B) \frac{1}{3} \sin(x^3) + C$
 - (C) $-\frac{x^3}{3}\sin(x^3) + C$
 - (D) $\frac{x^3}{3}\sin(x^3)+C$
 - (E) $\frac{x^3}{3}\sin\left(\frac{x^4}{4}\right) + C$
- u-sub: u=x3

- 9) If $f(x) = \ln(x + 4 + e^{-3x})$, then f'(0) is
 - (A) $\frac{2}{5}$
 - (B) $\frac{1}{5}$

 - (D) $\frac{2}{1}$
 - (E) nonexistent

 $f'(x) = \frac{1}{x + y + e^{-3x}} (1 - 3e^{-3x})$ $f'(b) = \frac{1}{e^{-3x}} (1 - 3e^{-3x})$ - (1-3)

10) What is the value of
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$$
? $= \sum_{n=1}^{\infty} \frac{2! 2^n}{3^n} = \sum_{n=1}^{\infty} \frac{2^n}{3^n} = \sum_{n=1}$

- (A) 1

$$\frac{2(43)}{1-43} = \frac{1}{1} = 1$$

(E) The series diverges.

11) The Maclaurin series for
$$\frac{1}{1-x}$$
 is $\sum_{n=0}^{\infty} x^n$. Which of the following is a

power series expansion for $\frac{x^2}{1-x^2}$? = $\frac{1}{1-x^2}$? = $\frac{1}{1-x^2}$ (A) $1+x^2+x^4+x^6+x^8+\cdots$

- (B) $x^2 + x^3 + x^4 + x^5 + \cdots$
- (C) $x^2 + 2x^3 + 3x^4 + 4x^5 + \cdots$
- (E) $x^2 + x^4 + x^6 + x^8 + \cdots$

$$\frac{x^{2}}{2^{n}} (x^{2})^{n}$$

$$x^{2} = \frac{2^{n}}{2^{n}} (x^{2})^{n}$$

$$= x^{2} + x^{4} + x^{6} + \cdots$$

The rate of change of the volume, V, of water in a tank with respect to 12) time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship?

#=KV

- (A) $V(t) = k\sqrt{t}$
- (B) $V(t) = k\sqrt{V}$
- (C) $\frac{dV}{dt} = k\sqrt{t}$
- (D) $\frac{dV}{dt} = \frac{k}{\sqrt{V}}$

$$\int (E) \frac{dV}{dt} = k\sqrt{V}$$

The graph of a function f is shown above. At which value of x is f13) continuous, but not differentiable?

(B) **b**

(D) d

(E) **e**

Shown above is a slope field for which of the following differential equations?

$$(A) \frac{dy}{dx} = \frac{x}{y}$$

(B)
$$\frac{dy}{dx} = \frac{x^2}{v^2}$$

(C)
$$\frac{dy}{dx} = \frac{x^3}{y}$$

(D)
$$\frac{dy}{dx} = \frac{x^2}{y}$$

$$\underbrace{(E) \frac{dy}{dx}} = \frac{x^3}{y^2}$$

(A)
$$y = 3 + 3x^2$$

$$(B) y = 5 + x^3$$

(C)
$$y = 6 + x^3$$

(D)
$$y = 6 - x^3$$

(E)
$$y = \frac{16}{5} + x + \frac{9}{5}x^5$$

$$f(x) = 3x^{2}$$

$$f(x) = 3x^{2} = x^{3} + c$$

$$6 = (1)^{3} + c = 5$$

- 16) If the line tangent to the graph of the function f at the point (1,7)passes through the point (-2,-2), then f'(1) is $=\frac{7z-4}{x_2-x_1}=\frac{7-(-z)}{1-(-z)}=\frac{9}{3}=3$

 - (E) undefined
- A curve C is defined by the parametric equations $x=t^2-4t+1$ and 17) $y=t^3$. Which of the following is an equation of the line tangent to the graph of C at the point (-3,8)?

$$\int (A)(x = -3)$$

(B)
$$x = 2$$

(C)
$$y = 8$$

(D)
$$y = -\frac{27}{10}(x+3) + 8$$

(E)
$$y = 12(x+3)+8$$

$$m = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2}{2t-4}$$

$$ct = 2$$

$$m = \frac{3(2)^2}{2(2)-4} = \frac{1^2}{2} = 0$$

$$(vertical tengent)$$

$$y = -3$$

The graph of the function f shown in the figure above has noticed tangents at x=3 and x=6. If $g(x)=\int_0^{2x} f(t)dt$, what is the value of g'(3)?

(A) 0

(B) -1

(C) -2

(B) -1

(C) -2

(B) = 2f(2:3) = 2f(6) = 2(0.9?) = -1.8

(C) -2

(A) 0

(B) -1

(C) -2 18)

$$(B)_{-1}$$

$$(C)$$
 -2

$$(D) -3$$

$$(E) -6$$

A curve has slope 2x+3 at each point (x, y) on the curve. Which of 19) the following is an equation for this curve if it passes through the point

$$(1,2)$$
?

(A)
$$y = 5x - 3$$

(B)
$$y = x^2 + 1$$

(C)
$$y = x^2 + 3x$$

$$(D)$$
 $y = x^2 + 3x - 2$

(E)
$$y = 2x^2 + 3x - 3$$

A function f has Maclaurin series given by $\frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \cdots + \frac{x^{n+3}}{(n+1)!} + \cdots$ 20) Which of the following is an expression for f(x)?

(A)
$$-3x\sin(x) + 3x^2$$

(B)
$$-\cos(x^2)+1$$

(C)
$$-x^2\cos(x) + x^2$$

(E)
$$e^{x^2} - x^3 - x^2$$

(E)
$$e^{x^2} - x^2 - 1$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{n}}{n!}$$

$$x^2e^{x} = x^2 + x^3 + \frac{x^4}{2!} + \frac{x^3}{3!} \dots$$

21) The number of moose in a national park is modeled by the function M that satisfies the logistic differential equation $\frac{dM}{dt} = 0.6M(1 - \frac{M}{200})$, where t is the time in years and M(0) = 50. What is $\lim_{t \to \infty} M(t)$?

$$\frac{n}{n}$$

What are all values of p for which the infinite series $\sum_{n=1}^{\infty} \frac{n}{n^p + 1}$ nverges? p > 0 $p \ge 1$ p > 122)

(A)
$$p > 0$$

(B)
$$p \ge 1$$

(C)
$$p > 1$$

(D)
$$p \ge 2$$

$$(E)_{p>2}$$

$$23) \qquad \int x \sin(6x) dx =$$

(A)
$$-x\cos(6x) + \sin(6x) + C$$

$$(B) - \frac{x}{6}\cos(6x) + \frac{1}{36}\sin(6x) + C$$

(C)
$$-\frac{x}{6}\cos(6x) + \frac{1}{6}\sin(6x) + C$$

(D)
$$\frac{x}{6}\cos(6x) + \frac{1}{36}\sin(6x) + C$$

(E)
$$6x\cos(6x) - \sin(6x) + C$$

of:
$$n = x$$
 $dv = s.n(6x) dx$
 $du = 1$ $sdv = s.in(6x) dx$
 $du = dx$ $v = to(-eas(6x))$
 $uv - svdu$
 $-to(6x) + to(6x) + c$
 $-to(6x) + to(6x) + c$

Which of the following series diverge? 24)

$$I. \sum_{n=0}^{\infty} \left(\frac{\sin 2}{\pi}\right)^{n}$$

$$II. \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

$$III. \sum_{n=1}^{\infty} \left(\frac{e^{n}}{e^{n}+1}\right)$$

- (A) III only
- (B) I and II only
- (C) I and III only
- D) II and III only
- (E) I, II, and III

24) I) $= \left(\frac{\sin^2 n}{\pi}\right)^n$ geometric $\frac{-1 + \sin^2 n}{\pi}$ < 1 so converges

II) $= \frac{1}{3\sqrt{n}} = \frac{1}{2\sqrt{n}} = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}}$

x	2	5	10	14
f(x)	12	28	34	30

25) The function f is continuous on the closed interval [2,14] and has values as shown in the table above. Using the subintervals [2,5], [5,10], and [10,14], what is the approximation of $\int_2^{14} f(x)dx$ found by using a

3 8 Y			
34.10	=340/		

28

right Riemann sum?

$$\frac{\partial k_{NM}}{[2]} \times \frac{\chi_{N}}{5} + \frac{f(\chi_{N})}{28} \cdot \frac{\Delta \chi}{3} = \frac{34}{84}$$
 $[5] = \frac{34}{5} \cdot \frac{3}{5} = \frac{34}{170}$
 $[5] = \frac{34}{14} \cdot \frac{5}{30} = \frac{120}{374}$

26)
$$\int \frac{2x}{(x+2)(x+1)} dx =$$
(A) $\ln|x+2| + \ln|x+1| + C$
(B) $\ln|x+2| + \ln|x+1| - 3x + C$
(C) $-4\ln|x+2| + 2\ln|x+1| + C$
(D) $4\ln|x+2| - 2\ln|x+1| + C$
(E) $2\ln|x| + \frac{2}{3}x + \frac{1}{2}x^2 + C$

27)
$$\frac{d}{dx} \left(\int_{0}^{\sqrt{3}} \ln(t^{2}+1) dt \right) = \lim_{x \to 2} \ln((x^{3})^{2}+1) \cdot 3x^{2}$$
(A) $\frac{2x^{3}}{x^{6}+1}$
(B) $\frac{3x^{2}}{x^{6}+1}$

- (B) $\frac{3x^2}{x^6+1}$
- (C) $\ln(x^6+1)$
- (D) $2x^3 \ln(x^6 + 1)$
- $(E) \beta x^2 \ln(x^6 + 1)$

What is the coefficient of
$$x^2$$
 in the Taylor series for $\frac{1}{(1+x)^2}$ about $x = 0$? (Maclauch)
$$f(x) + f(x) \times + \frac{1}{2!} \times x^2$$

- (A) $\frac{1}{6}$

$$f(x) = (1+x)^{2}$$

$$f'(x) = -2(1+x)^{3}$$

$$f''(x) = 6(1+x)^{4} = \frac{6}{(1+x)^{4}}$$

$$f''(6) = \frac{6}{(1+x)^{4}} = 6$$

$$\frac{6}{2!} = \frac{6}{2} = 3$$

2003 Calculus BC Multiple Choice Exam Part B

The graph of the function f is shown above. Which of the following 76) statements must be false?

(A) f(a) exists

- (B) f(x) is defined for 0 < x < a
- (C) f is not continuous at x=a

(D) $\lim_{x \to \infty} f(x)$ exists

(E) $\lim_{x\to a} f'(x)$ exists talse (no derivative where there is discontinuity)

Let $P(x) = 3x^2 - 5x^3 + 7x^4 + 3x^5$ be the fifth-degree Taylor polynomial for the function f about x=0. What is the value of f''

(D)
$$-\frac{5}{6}$$

(E)
$$-\frac{1}{6}$$

on f about
$$x = 0$$
. What is the value of (0).

$$|f(x)| = f(x) + f(x) \times + f''(x) \times \frac{2}{2!} \times \frac{f'''(x)}{3!} \times \frac{3}{4!} \times \frac{4}{4!} \times$$

The radius of a circle is increasing at a constant rate of 0.2 meters per 78) second. What is the rate of increase in the area of the circle at the instant when the circumference of the circle is 20π meters? $\begin{pmatrix}
C = 2\pi r = 20\pi \\
r = \frac{20\pi}{4} = 10
\end{pmatrix}
\frac{dA}{dt} = 2\pi r \frac{dC}{dt} = 2\pi r (10)(92) = 4\pi$

(A)
$$0.04\pi \ m^2/\text{sec}$$

(B)
$$0.4\pi \ m^2 / \text{sec}$$

$$\sqrt{C}$$
 $4\pi m^2/\text{sec}$

- (D) $20\pi \ m^2/\text{sec}$
- (E) $100\pi \ m^2 / \text{sec}$

x	f(x)	f'(x)	g(x)	g'(x)
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

- The table above gives values of f, f', g, and g' at selected values of 79) n'(x) = f'(g(x)).g'(x) chain Rule x. If h(x) = f(g(x)), then h'(1) =
 - (A) 5
 - (B) 6

- h'(1) = f'(g(1)),g'(1) =+1(-1).916) = (5).(2) -10
- Insects destroyed a crop at the rate of $\frac{100e^{-0.1t}}{2-e^{-3t}}$ tons per day, where 80) time t is measured in days. To the nearest ton, how many tons did the insects destroy during the time interval $7 \le t \le 14$?
 - (A)125
 - (B) 100
 - (C) 88
 - (D) 50
 - (E) 12

- net change in $f = \int_{2}^{6} f'(x)dx$ $= \int_{2}^{14} \frac{100e^{-0.1t}}{2-e^{-3t}} dt$ wheth ?
 - = 124,994

The graph of the function f is shown in the figure above. The value 81) of $\lim_{x\to 1} \sin(f(x))$ is = 5m(x) = 0.404277

- (A) 0.909
 - (B) 0.841
 - (C) 0.141
 - (D) -0.416
 - (E) nonexistent

The rate of change of the altitude of a hot-air balloon is given by $r(t) = t^{3} - 4t^{2} + 6$ for $0 \le t \le 8$. Which of the following expressions gives the change in altitude of the balloon during the time the altitude is graph (4)= a(4)=+3-4+2+6 decreasing? when derivative 20

- (B) $\int_0^8 r(t) dt$
- (C) $\int_0^{2.667} r(t) dt$
- (D) $\int_{1.572}^{3.514} r'(t) dt$

(E)
$$\int_0^{2.667} r'(t) dt$$

x	0	1	2	3	4
f(x)	2	3	4	3	2

The function f is continuous and differentiable on the closed interval 83) [0,4]. The table above gives selected values of \overline{f} on this interval. Which of the following statements must be true?

- (A) The minimum value of f on [0,4] is 2.
- (B) The maximum value of f on [0,4] is 4.
- (C) f(x) > 0 for 0 < x < 4
- (D) f'(x) < 0 for 2 < x < 4
- T(E) There exists c, with 0 < c < 4, for which f'(c) = 0. Mean Value (Rolles) Thesem

A particle moves in the xy-plane so that its position at any time t is given by $x(t) = t^2$ and $y(t) = \sin(4t)$. What is the speed of the particle when

$$t = 3$$
?

- (D) 9.016
- (E) 47.393

85) If a trapezoidal sum overapproximates $\int_0^4 f(x)dx$, and a right Riemann sum underapproximates $\int_0^4 f(x)dx$, which of the following could be the graph of y = f(x)?

86) Let f be the function with derivative defined by $f'(x) = \sin(x^3)$ on the interval -1.8 < x < 1.8. How many points of inflection does the graph of f have on this interval?

- (A) Two
- (B) Three
- (C) Four
 - (D) Five
 - (E) Six

- 87) A particle moves along the *x*-axis so that at any time $t \ge 0$, its velocity is given by $v(t) = \cos(2-t^2)$. The position of the particle is 3 at time t = 0. What is the position of the particle when its velocity is first equal to 0?
 - (A) 0.411
 - (B) 1.310
 - (C) 2.816
 - (D) 3.091
 - (E) 3.411
- graph

 (65/2-4)

 (65/2-4)
- $x(t) = \int \cos(z-t^2) dt$ 0.655137 $\int \cos(z-t^2) dt = \times (0.655137) \times (0)$ 0.655137 $-...(835406 = \times (0.655137) 3$ (0.655137) = -...1835406 + 3 -...201645

On the closed interval [2,4], which of the following could be the 88) graph of a function f with the property that $\frac{1}{4-2} \int_2^4 f(t) dt = 1$?

(B) 1.067

 $(C)_0.577$

(D)\(\)0.462

(E) 0.267

 $\frac{1}{2} \times \frac{1}{2} \times \frac{1$

0.46188

The graph of (f'), the derivative of the function f, is shown above. If 90) f(0) = 0, which of the following must be true?

I.
$$f(0) > f(1)$$

I. f(0) > f(1) [0,1) f'(x) > 0 increasing, so TRUE

II. f(2) > f(1) (1,2) f'(x) > 0 increasing, so TRUE

II.
$$f(2) > f(1)$$

III.
$$f(1) > f(3)$$

III. f(1) > f(3) (1,3) + (H changes sign: Cant Say Must be TRUE, so FACE

(A) I only

(B) II only

- (C) III only
- (D) I and II only
- (E) II and III only

- The height h, in meters, of an object at time t is given by 91) $h(t) = 24t + 24t^{3/2} - 16t^2$. What is the height of the object at the instant when it reaches its maximum upward velocity? VADE F
 - (A) 2.545 meters
 - (B) 10.263 meters
 - (C) 34.125 meters
 - (D) 54.889 meters
 - (E) 89.005 meters
- V'(4) = 24+ 36+ "12-32+ a'(t) = $18t^{-1/2}$ = 32 = 0 18 = 32 18 = 32max v' when a =0 T= 18 t=(18)2= 1316406 M(.316406) = 10,263
- Let f be the function defined by $f(x) = x + \ln x$. What is the value of c for which the instantaneous rate of change of f at x = c is the same as the average rate of change of f over [1,4]?
 - (A) 0.456
 - (B) 1.244
 - (C) 2.164
 - (D) 2.342
 - (E) 2.452

ratofdanje

+1(x)=1+x ary rate of change = + 54(1+x)dx
instantaneous of f

2003 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC
SECTION II, Part A
Time—45 minutes
Number of problems—3

A graphing calculator is required for some problems or parts of problems.

- 1. Let R be the shaded region bounded by the graphs of $y = \sqrt{x}$ and $y = e^{-3x}$ and the vertical line x = 1, as shown in the figure above.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when R is revolved about the horizontal line y = 1.
 - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid.

a) Thersection $e^{-3x} = \sqrt{x}$ (in calc)

At x = .23843413At x = .23843413Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available to AP professionals at apcentral collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

Across = b(sb) = 562 b = 1x-e-3x Ams = 5 (18-e-3x)2

V= SAmusadx

= \(\sigma \left(\sigma \tag{V} \tag{\sigma} \tag{\text{weta}} \ \q \right) = \(\frac{1}{1.554} \right) \)

2003 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 2. A particle starts at point A on the positive x-axis at time t = 0 and travels along the curve from A to B to C to D, as shown above. The coordinates of the particle's position (x(t), y(t)) are differentiable functions of t, where $x'(t) = \frac{dx}{dt} = -9\cos\left(\frac{\pi t}{6}\right)\sin\left(\frac{\pi\sqrt{t+1}}{2}\right)$ and $y'(t) = \frac{dy}{dt}$ is not explicitly given. At time t = 9, the particle reaches its final position at point D on the positive x-axis.
 - (a) At point C, is $\frac{dy}{dt}$ positive? At point C, is $\frac{dx}{dt}$ positive? Give a reason for each answer.
 - (b) The slope of the curve is undefined at point B. At what time t is the particle at point B?
 - (c) The line tangent to the curve at the point (x(8), y(8)) has equation $y = \frac{5}{9}x 2$. Find the velocity vector and the speed of the particle at this point.
 - (d) How far apart are points A and D, the initial and final positions, respectively, of the particle?
- (a) At point c, dy is not positive because ty(t) its decreasing along from at c. dx is not positive because xLt) is decresing along the path at c.

(b)
$$dx = -9\cos(\frac{\pi t}{5})\sin(\pi\sqrt{\frac{t+1}{2}}) = 0$$
 or understand.
 $=ther \cos(\frac{\pi t}{5}) = 0$, $\frac{\pi t}{5} = \frac{\pi t}{5}$, $\frac{t}{5} = \frac{3}{5}$,

(c)
$$y = \frac{1}{4}x^{-2}$$

$$\frac{dy}{dx} = \frac{1}{4} = \frac{1}{4}(\frac{1}{4}x^{-2} + \frac{1}{4}x^{-2}) = \frac{1}{4}(\frac{1}{4}x^{-2}) = \frac{1}{4}$$

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available to AP professionals at apcentral collegeboard com and to students and parents at www.collegeboard.com/apstudents.

(d) - by hack)

GO ON TO THE NEXT PAGE.

these points howe save y, so distance is determined by the net accumulation of change in x only!

(x'lthax = x(a)-x(o) = distance apart Sq (-9005 (Tt) sin (TV=T) at = distance apart = 1 39, 255 m

Barastan kan beraran 1900 di k

2003 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 3. The figure above shows the graphs of the line $x = \frac{5}{3}y$ and the curve C given by $x = \sqrt{1 + y^2}$. Let S be the shaded region bounded by the two graphs and the x-axis. The line and the curve intersect at point P.
 - (a) Find the coordinates of point P and the value of $\frac{dx}{dy}$ for curve C at point P.
 - (b) Set up and evaluate an integral expression with respect to y that gives the area of S.
 - (c) Curve C is a part of the curve $x^2 y^2 = 1$. Show that $x^2 y^2 = 1$ can be written as the polar equation $r^2 = \frac{1}{\cos^2 \theta \sin^2 \theta}.$
 - (d) Use the polar equation given in part (c) to set up an integral expression with respect to the polar angle θ that represents the area of S.

(a) Intersection: $\sqrt{1+y^2} = \frac{5}{3}y$ $y = \frac{5}{3}(\frac{3}{6}) = \frac{5}{3}\sqrt{\frac{4x}{4y}} = \frac{1}{2}(1+y^2)^{1/2}(3)$ $1+y^2 = \frac{27}{4}y^2$ $\frac{16}{4}y^2 = 1$, $y^2 = \frac{3}{12}$, $y = \pm \frac{3}{4} = \frac{3}{4}$ $= \sqrt{1+y^2} = \sqrt{1+y^2}$ END OF PART A OF SECTION II $= 16 \pm \frac{3}{3}$ (b) $= \sqrt{1+y^2} = \sqrt{1+y^2} = \sqrt{1+y^2}$ $= \sqrt{1+y$

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available to AP professionals at apcentral.collegeboard.com and to students and parents at www.collegeboard.com/apstudents.

n, an ana garakan di Sang, an apagitaran agai sanga an agai a na sakibi di Anniya asa sakib

ega e logentijne viste verdegijs ei staget te ser verditat bijke ei viste is til viste vijste and i til be.

and the digital contraction of the contraction of the property of the contraction of the

2003 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC SECTION II, Part B Time—45 minutes Number of problems—3

No calculator is allowed for these problems.

- 4. Let f be a function defined on the closed interval $-3 \le x \le 4$ with f(0) = 3. The graph of f', the derivative of f, consists of one line segment and a semicircle, as shown above.
 - (a) On what intervals, if any, is f increasing? Justify your answer.
 - (b) Find the x-coordinate of each point of inflection of the graph of f on the open interval -3 < x < 4. Justify your answer.
 - (c) Find an equation for the line tangent to the graph of f at the point (0, 3).
 - (d) Find f(-3) and f(4). Show the work that leads to your answers.

(a) f is increasing where f'(x) >0, which is tree for [-3 \le x < -2,]

(b) f has an inflection point where f''(x) changes sign, which means where f'(x) is changing from increasing to decreasing for vice versal.

This occurs at X=0 and Z=0.

(a) f'(0)=-2 is the size of the tanget like, so (Ty-3)=-2(x-0)

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available to AP professionals at apcentral.collegeboard.com and to students and parents at www.collegeboard.com/apstudents.

(d) -> (on back)

(d)
$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$
, we have point $(0,3)$ on $f(x)$ so $f(a) + f(a) = f(a) - f(a)$.

$$\int_{-3}^{4} f'(x)dx = f(a) - f(a)$$

$$\int_{-3}^{4} f'(x)dx = f(a)$$

A= 8- = T(E) ターをサイ - (b-211)

and the second of the second o

in despuisant (1990), de la hacida de l'appendient de la participa (1997), le propriet de la pro

ena u repetual de combo

2003 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 5. A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure above. Let h be the depth of the coffee in the pot, measured in inches, where h is a function of time t, measured in seconds. The volume V of coffee in the pot is changing at the rate of $-5\pi\sqrt{h}$ cubic inches per second. (The volume V of a cylinder with radius r and height h is $V = \mathbf{w} r^2 h$.)
 - (a) Show that $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$.
 - (b) Given that h = 17 at time t = 0, solve the differential equation $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$ for h as a function of t.
 - (c) At what time t is the coffeepot empty?
- 6. The function f is defined by the power series

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots + \frac{(-1)^n x^{2n}}{(2n+1)!} + \dots$$

for all real numbers x.

- (a) Find f'(0) and f''(0). Determine whether f has a local maximum, a local minimum, or neither at x = 0. Give a reason for your answer.
- (b) Show that $1 \frac{1}{3!}$ approximates f(1) with error less than $\frac{1}{100}$.
- (c) Show that y = f(x) is a solution to the differential equation $xy' + y = \cos x$.

END OF EXAMINATION

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available to AP professionals at apcentral collegeboard.com and to students and parents at www.collegeboard.com/apstudents.

5 a) related rates!.
$$V=\pi r^{2}h$$

So since r is fined at $r=5$
 $V=25\pi h$
 $t=25\pi h$

6a)
$$f(x) = (-\frac{x^2}{3!} + \frac{x^4}{5!} + \frac{x^6}{5!} + \frac{(-1)^6 x^{26}}{(2mr)!}$$
 $f(x) = \frac{2}{3!} \times \frac{1}{5!} \times \frac{3}{2} - \frac{6}{2} \times \frac{x^4}{4} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} + \frac{1}{5!} \times \frac{3}{2} - \frac{6}{2!} \times \frac{x^4}{4} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} + \frac{1}{5!} \times \frac{3}{2} - \frac{6}{2!} \times \frac{x^4}{4} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} + \frac{2}{5!} \times \frac{3}{4} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} + \frac{2}{5!} \times \frac{3}{4} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{2}{4} + \frac{3}{5!} \times \frac{3}{4} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{2}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{3!} \times \frac{3}{4!} + \frac{3}{5!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{4!} \times \frac{3}{4!} + \frac{3}{4!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{4!} \times \frac{3}{4!} + \frac{3}{4!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{4!} \times \frac{3}{4!} + \frac{3}{4!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{4!} \times \frac{3}{4!} \times \frac{3}{4!} + (-1)^6 (2n) \times 2^{n-2}$
 $f(x) = -\frac{3}{4!} \times \frac{3}{4!} \times \frac{3}$